MATH 1210 Assignment 2 Solutions Fall 2018

1. Find all exponential representations for
(a) $(-\sqrt{3}-i)^{6}$
(b) $\frac{(1+i)^{14}(2+2 \sqrt{3} i)^{4}}{4^{6} i(1-i)}$
(a) $(-\sqrt{3}-i)^{6}=\left(2 e^{-5 \pi i / 6}\right)^{6}=2^{6} e^{-5 \pi i}=2^{6} e^{\pi i+2 k \pi i}=64 e^{(2 k+1) \pi i}$
(b)

$$
\begin{aligned}
\frac{(1+i)^{14}(2+2 \sqrt{3} i)^{4}}{4^{6} i(1-i)} & =\frac{(1+i)^{14}(2+2 \sqrt{3} i)^{4}}{4^{6}(1+i)}=\frac{1}{4^{6}}(1+i)^{13}(2+2 \sqrt{3} i)^{4} \\
& =\frac{1}{4^{6}}\left(\sqrt{2} e^{\pi i / 4}\right)^{13}\left(4 e^{\pi i / 3}\right)^{4}=\frac{1}{4^{6}}\left(2^{6} \sqrt{2} e^{13 \pi i / 4}\right)\left(4^{4} e^{4 \pi i / 3}\right)=4 \sqrt{2} e^{55 \pi i / 12} \\
& =4 \sqrt{2} e^{7 \pi i / 12}=4 \sqrt{2} e^{7 \pi i / 12+2 k \pi i}=4 \sqrt{2} e^{(24 k+7) \pi i / 12}
\end{aligned}
$$

2. What is the remainder when $P(x)=(1-2 i) x^{3}+3 i x^{2}+4 x-2 i$ is divided by $2 x-1+3 i$?

The remainder is

$$
\begin{aligned}
P\left(\frac{1-3 i}{2}\right) & =(1-2 i)\left(\frac{1-3 i}{2}\right)^{3}+3 i\left(\frac{1-3 i}{2}\right)^{2}+4\left(\frac{1-3 i}{2}\right)-2 i \\
& =\frac{(-5-5 i)(-8-6 i)}{8}+\frac{3 i}{4}(-8-6 i)+2(1-3 i)-2 i \\
& =\frac{1}{8}(10+70 i)+\frac{3}{4}(6-8 i)+2-8 i \\
& =\frac{31}{4}-\frac{21}{4} i .
\end{aligned}
$$

3. Find h and k so that remainders are $1291 / 2$ and $123 / 16$ when $x^{4}+h x^{2}-x+k$ is divided by $x+5$ and $2 x-3$, respectively.

If $P(x)=x^{4}+h x^{2}-x+k$, then we can write that

$$
\frac{1291}{2}=P(-5)=(-5)^{2}+h(-5)^{2}-(-5)+k, \quad \frac{123}{16}=P(3 / 2)=\left(\frac{3}{2}\right)^{4}+h\left(\frac{3}{2}\right)^{2}-\frac{3}{2}+k .
$$

These simplify to

$$
25 h+k=\frac{31}{2}, \quad \frac{9 h}{4}+k=\frac{33}{8} .
$$

Solutions are $h=1 / 2$ and $k=3$.
4. Show that $x=-1+2 i$ is a zero of the polynomial

$$
P(x)=x^{4}+2 x^{3}+(5+i) x^{2}+2 i x+5 i
$$

When we substitute $-1+2 i$ into the polynomial,

$$
\begin{aligned}
P(-1+2 i) & =(-1+2 i)^{4}+2(-1+2 i)^{3}+(5+i)(-1+2 i)^{2}+2 i(-1+2 i)+5 i \\
& =(-3-4 i)^{2}+2(-1+2 i)(-3-4 i)+(5+i)(-3-4 i)-4-2 i+5 i \\
& =(-7+24 i)+2(11-2 i)+(-11-23 i)+(-4+3 i) \\
& =(-7+22-11-4)+(24-4-23+3) i=0
\end{aligned}
$$

Hence, $x=-1+2 i$ is a zero of the polynomial.
5. In each part of this question: (i) use Descartes' rules of signs to state the number of possible positive and negative zeros of the polynomial; (ii) use the bounds theorem to find bounds for zeros of the polynomial; (iii) use the rational root theorem to list all possible rational zeros of the polynomial. Take the results of (i) and (ii) into account in (iii).
(a) $15 x^{8}-2 x^{4}+3 x-12$
(b) $24 x^{4}-13 x^{3}+2 x^{2}-5 x+21$
(a)(i) Since $P(x)=15 x^{8}-2 x^{4}+3 x-12$ has three sign changes, there is 3 or 1 positive zero. Since $P(-x)=15 x^{8}-2 x^{4}-3 x-12$ has one sign change, there is one negative zero.
(ii) Since $M=12$, the bounds theorem states that $|x|<12 / 15+1=9 / 5$.
(iii) Possible rational zeros are $\pm 1, \pm 1 / 3, \pm 2 / 3, \pm 4 / 3, \pm 1 / 5, \pm 2 / 5, \pm 3 / 5, \pm 4 / 5, \pm 6 / 5, \pm 1 / 15$, $\pm 2 / 15, \pm 4 / 15$.
(b)(i) Since $P(x)=24 x^{4}-13 x^{3}+2 x^{2}-5 x+21$ has four sign changes, there is 4 or 2 or 0 positive zeros. Since $P(-x)=24 x^{4}+13 x^{3}+2 x^{2}+5 x+21$ has no sign change, there are no negative zeros.
(ii) Since $M=21$, the bounds theorem states that $|x|<21 / 24+1=15 / 8$.
(iii) Possible rational zeros are $1,1 / 2,3 / 2,1 / 3,1 / 4,3 / 4,7 / 4,1 / 6,7 / 6,1 / 8,3 / 8,7 / 8,1 / 12,7 / 12,1 / 24$, 7/24.
6. In each part of this question, use the procedure of Problem 5 to find all roots of the equation:
(a) $12 x^{4}+7 x^{3}+2 x^{2}+7 x-10=0$
(b) $x^{4}+2 x^{3}-41 x^{2}-42 x+360=0$
(c) $2 x^{6}-x^{5}+4 x-2=0$
(d) $x^{6}+x^{3}+1=0$
(a) Since $P(x)=12 x^{4}+7 x^{3}+2 x^{2}+7 x-10$ has one sign change, there is one positive root. Since $P(-x)=12 x^{4}-7 x^{3}+2 x^{2}-7 x-10$ has 3 sign changes, there is 3 or 1 negative root. Since $M=10$, the bounds theorem states that $|x|<10 / 12+1=11 / 6$. Possible rational roots are $\pm 1, \pm 1 / 2, \pm 1 / 3, \pm 2 / 3, \pm 5 / 3, \pm 1 / 4, \pm 5 / 4, \pm 1 / 6, \pm 5 / 6, \pm 1 / 12, \pm 5 / 12$, Trial and error shows that $x= \pm 1, \pm 1 / 2, \pm 1 / 3$ are not roots, but $x=2 / 3$ is. We factor it from the quartic,

$$
P(x)=(3 x-2)\left(4 x^{3}+5 x^{2}+4 x+5\right)
$$

Possible rational zeros of the cubic are $-1 / 2,-3 / 2,-1 / 4,-5 / 4$. Trial and error shows that $x=$ $-5 / 4$ is a solution. We factor it from the cubic,

$$
P(x)=(3 x-2)(4 x+5)\left(x^{2}+1\right) .
$$

The remaining two solutions are $x= \pm i$.
(b) Since $P(x)=x^{4}+2 x^{3}-41 x^{2}-42 x+360$ has two signs changes, there is 2 or 0 positive roots. Since $P(-x)=x^{4}-2 x^{3}-41 x^{2}+42 x+360$ has 2 sign change, there is also 2 or 0 negative roots. Since $M=360$, the bounds theorem states that $|x|<360 / 1+1=361$. Possible rational solutions are

$$
\begin{aligned}
& \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 8, \pm 9, \pm 10, \pm 12, \pm 15, \pm 18, \pm 20, \pm 24, \\
& \quad \pm 30, \pm 36, \pm 40, \pm 45, \pm 60, \pm 72, \pm 90, \pm 120, \pm 180, \pm 360
\end{aligned}
$$

Trial and error shows that $\pm 1, \pm 2$ are not solutions, but $x=3$. We factor it from the polynomial,

$$
P(x)=(x-3)\left(x^{3}+5 x^{2}-26 x-120\right) .
$$

Possible rational solutions of the cubic are

$$
\pm 3, \pm 4, \pm 5, \pm 6, \pm 8, \pm 10, \pm 12, \pm 15, \pm 20, \pm 24, \pm 30, \pm 40, \pm 60, \pm 120
$$

Trial and error shows that $\pm 3,4$ are not zeros of the cubic, but $x=-4$ is. We factor it from the cubic,

$$
P(x)=(x-3)(x+4)\left(x^{2}+x-30\right)=(x-3)(x+4)(x-5)(x+6) .
$$

The remaining two solutions are $x=5$ and $x=-6$.
(c) Since $P(x)=2 x^{6}-x^{5}+4 x-2$ has three signs changes, there is 3 or 1 positive roots. Since $P(-x)=2 x^{6}+x^{5}-4 x-2$ has one sign change, the equation has one negative solution. Since $M=4$, the bounds theorem states that $|x|<4 / 2+1=3$. Possible rational solutions are $\pm 1, \pm 2, \pm 1 / 2$. Since $x=1 / 2$ is a solution, we factor it from the polynomial,

$$
P(x)=2 x^{6}-x^{5}+4 x-2=(2 x-1)\left(x^{5}+2\right) .
$$

The remaining solutions satisfy

$$
x^{5}+2=0 \quad \text { or } \quad x^{5}=-2 .
$$

We write -2 in exponential form

$$
x^{5}=2 e^{\pi i}=2 e^{\pi i+2 k \pi i}=2 e^{(2 k+1) \pi i}
$$

We now take fifth roots, $\quad x=2^{1 / 5} e^{(2 k+1) \pi i / 5}$. For $k=0,1,2,3,4$, we obtain the solutions

$$
\begin{aligned}
& x_{0}=2^{1 / 5} e^{\pi i / 5}=2^{1 / 5}[\cos (\pi / 5)+\sin (\pi / 5) i], \\
& x_{1}=2^{1 / 5} e^{3 \pi i / 5}=2^{1 / 5}[\cos (3 \pi / 5)+\sin (3 \pi / 5) i], \\
& x_{2}=2^{1 / 5} e^{\pi i}=2^{1 / 5}[\cos (\pi)+\sin (\pi) i]=-2^{1 / 5}, \\
& x_{3}=2^{1 / 5} e^{7 \pi i / 5}=2^{1 / 5}[\cos (7 \pi / 5)+\sin (7 \pi / 5) i], \\
& x_{4}=2^{1 / 5} e^{9 \pi i / 5}=2^{1 / 5}[\cos (9 \pi / 5)+\sin (9 \pi / 5) i] .
\end{aligned}
$$

(d) If we set $y=x^{3}$, the equation becomes

$$
y^{2}+y+1=0 \quad \text { with solutions } \quad y=\frac{-1 \pm \sqrt{1-4}}{2}=\frac{-1 \pm \sqrt{3} i}{2}
$$

Thus,

$$
x^{3}=\frac{-1 \pm \sqrt{3} i}{2}
$$

To solve with the positive root, we set

$$
x^{3}=\frac{-1+\sqrt{3} i}{2}=e^{2 \pi i / 3}=e^{2 \pi i / 3} e^{2 k \pi i}=e^{(6 k+2) \pi i / 3} .
$$

When we take cube roots, $\quad x=e^{6 k+2) \pi i / 9}$. For $k=0,1,2$, we obtain the roots

$$
x_{0}=e^{2 \pi i / 9}, \quad x_{1}=e^{8 \pi i / 9}, \quad x_{3}=e^{14 \pi i / 9}
$$

To solve with the negative root, we set

$$
x^{3}=\frac{-1-\sqrt{3} i}{2}=e^{-2 \pi i / 3}=e^{-2 \pi i / 3} e^{2 k \pi i}=e^{(6 k-2) \pi i / 3}
$$

When we take cube roots $\quad x=e^{6 k-2) \pi i / 9}$. For $k=0,1,2$, we obtain the roots

$$
x_{4}=e^{-2 \pi i / 9}, \quad x_{5}=e^{4 \pi i / 9}, \quad x_{6}=e^{10 \pi i / 9}
$$

7. Prove that if a_{n} is greater than $2\left|a_{n-1}\right|, 2\left|a_{n-2}\right|, \ldots, 2\left|a_{0}\right|$, then every zero of the polynomial $P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ must satisfy

$$
|x|<\frac{3}{2} .
$$

According to the bounds theorem, $|x|<\frac{M}{\left|a_{n}\right|}+1$. Since $\left|a_{n}\right|>2 M$, we can write that

$$
|x|<\frac{M}{2 M}+1=\frac{3}{2} .
$$

8. Prove that if $P(x)$ is a polynomial having only even powers of x, and $P(a)=0$, then $P(x)$ is divisible by $x^{2}-a^{2}$.

If $P(x)$ has only even powers of x, then when $x=a$ is a zero of the polynomial, so also is $x=-a$. It follows that $x-a$ and $x+a$ are both factors of $P(x)$, and therefore so also is $(x-a)(x+a)=x^{2}-a^{2}$; that is, $P(x)$ is divisible by $x^{2}-a^{2}$.

