MATH 1210 Assignment 3 Fall 2018

1. Given the vectors $\mathbf{u}=\langle 3,1\rangle, \mathbf{v}=\langle 2,-4\rangle$, and $\mathbf{w}=\langle 5,-2\rangle$, find scalars a and b such that $\mathbf{w}=a \mathbf{u}+b \mathbf{v}$.
2. Show that the lines

$$
\begin{array}{ll}
x=1-t, & x=3+5 s / 2, \\
y=-3+3 t, & \text { and } \\
z=2+4 t, & y=2+7 s / 2, \\
z=5+s,
\end{array}
$$

intersect, and find the acute angle between them.
3. Find the components of all vectors \mathbf{v} which have length 2 and are perpendicular to both the lines $x=4+3 t, y=2-t, z=1+5 t$ and $x-y+z=2,3 x+2 y-4 z=6$.
4. Find the equation of the plane, simplified as much as possible, that contains the point where the line $x=-1+2 t, y=-4+2 t, z=1-4 t$ intersects the $x z$-plane, and is perpendicular to the line

$$
\frac{x+1}{3}=\frac{3 y+1}{6}=\frac{1-2 z}{4} .
$$

5. Find, if possible, the equation of a plane containing the two lines

$$
\begin{array}{rlrl}
x-y+2 z & =9, \\
2 x+y-3 z & =-9, & \text { and } &
\end{array} \begin{aligned}
& 2 x+y-4 z
\end{aligned}=-12, ~ x+3 y+5 z=10 .
$$

6. (a) Prove that if A, B, and C are three points in space, then the area of triangle $A B C$ can be calculated with the formula

$$
\text { Area of } \Delta A B C=\frac{1}{2}|\mathbf{A B} \times \mathbf{A C}| \text {. }
$$

(b) Use the formula in part (a) to find the area of the triangle with vertices $(2,0,-3),(1,5,6)$, and $(-1,3,4)$.

