1. Given the vectors $\mathbf{u}=\langle 3,1\rangle, \mathbf{v}=\langle 2,-4\rangle$, and $\mathbf{w}=\langle 5,-2\rangle$, find scalars a and b such that $\mathbf{w}=a \mathbf{u}+b \mathbf{v}$.

If we substitute components for the three vectors, we obtain

$$
\langle 5,-2\rangle=a\langle 3,1\rangle+b\langle 2,-4\rangle .
$$

We now equate x - and y-components of these vectors,

$$
5=3 a+2 b, \quad-2=a-4 b
$$

The solution of these equations is $a=8 / 7$ and $b=11 / 14$.
2. Show that the lines

$$
\begin{array}{ll}
x=1-t, & x=3+5 s / 2, \\
y=-3+3 t, & \text { and } \\
z=2+4 t, & y=2+7 s / 2, \\
z=5+s,
\end{array}
$$

intersect, and find the acute angle between them.
When we equate x and y-values, we obtain

$$
1-t=3+\frac{5 s}{2}, \quad-3+3 t=2+\frac{7 s}{2}
$$

The solution of these equations is $t=1 / 2$ and $s=-1$. These give $x=1 / 2$ and $y=-3 / 2$. Both equations for z gives $z=4$ and the point of intersection of the lines is therefore $(1 / 2,-3 / 2,4)$. Vectors along the lines are $\langle-1,3,4\rangle$ and $\langle 5,7,2\rangle$. If θ is the angle between the lines, we can write that

$$
\langle-1,3,4\rangle \cdot\langle 5,7,2\rangle=|\langle-1,3,4\rangle||\langle 5,7,2\rangle| \cos \theta .
$$

Thus,

$$
\cos \theta=\frac{-1(5)+3(7)+4(2)}{\sqrt{1+9+16} \sqrt{25+49+4}}=\frac{24}{\sqrt{26} \sqrt{78}} \quad \Longrightarrow \quad \theta=\operatorname{Cos}^{-1} \frac{12}{13 \sqrt{3}}=1.01 \text { radians }
$$

3. Find the components of all vectors \mathbf{v} which have length 2 and are perpendicular to both the lines $x=4+3 t, y=2-t, z=1+5 t$ and $x-y+z=2,3 x+2 y-4 z=6$.

A vector along the second line is

$$
\mathbf{v}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & -1 & 1 \\
3 & 2 & -4
\end{array}\right|=\langle 2,7,5\rangle .
$$

Since a vector along the first line is $\mathbf{u}=\langle 3,-1,5\rangle$, a vector perpendicular to both lines is

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
3 & -1 & 5 \\
2 & 7 & 5
\end{array}\right|=\langle-40,-5,23\rangle .
$$

A unit vector in this direction is

$$
\frac{\langle-40,-5,23\rangle}{\sqrt{1600+25+529}}=\frac{\langle-40,-5,23\rangle}{\sqrt{2154}} .
$$

There are two vectors of length 2 perpendicular to both lines, namely,

$$
\pm \frac{2\langle-40,-5,23\rangle}{\sqrt{2154}}
$$

4. Find the equation of the plane, simplified as much as possible, that contains the point where the line $x=-1+2 t, y=-4+2 t, z=1-4 t$ intersects the $x z$-plane, and is perpendicular to the line

$$
\frac{x+1}{3}=\frac{3 y+1}{6}=\frac{1-2 z}{4} .
$$

To find where the line intersects the $x z$-plane, we set

$$
0=y=-4+2 t \quad \Longrightarrow \quad t=2 .
$$

This gives the point $(3,0,-7)$. When we write the symmetric equations of the second line in the form

$$
\frac{x+1}{3}=\frac{y+1 / 3}{2}=\frac{z-1 / 2}{-2},
$$

we see that a vector along the line is $\langle 3,2,-2\rangle$. Since this vector is normal to the plane, the equation of the plane is

$$
3(x-3)+2(y)-2(z+7)=0 \quad \Longrightarrow \quad 3 x+2 y-2 z=23 .
$$

5. Find, if possible, the equation of a plane containing the two lines

$$
\begin{array}{rlrl}
x-y+2 z & =9, \\
2 x+y-3 z & =-9, & \text { and } &
\end{array} \begin{aligned}
& 2 x+y-4 z=-12, \\
& x+3 y+5 z
\end{aligned}=10 .
$$

For the lines to determine a plane, they must either be parallel or intersect. Since vectors along the lines are

$$
\mathbf{u}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & -1 & 2 \\
2 & 1 & -3
\end{array}\right|=\langle 1,7,3\rangle, \quad \mathbf{v}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
2 & 1 & -4 \\
1 & 3 & 5
\end{array}\right|=\langle 17,-14,5\rangle,
$$

and these vectors are not multiples of each other, the lines are not parallel. To determine whether the lines intersect, we solve all four equations simultaneously. The augmented matrix is

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & -1 & 2 & 9 \\
2 & 1 & -3 & -9 \\
2 & 1 & -4 & -12 \\
1 & 3 & 5 & 10
\end{array}\right) \begin{array}{c}
R_{2} \rightarrow-2 R_{1}+R_{2} \\
R_{3} \rightarrow-2 R_{1}+R_{3} \\
R_{4} \rightarrow-R_{1}+R_{4}
\end{array} \quad \longrightarrow \quad\left(\begin{array}{ccc|c}
1 & -1 & 2 & 9 \\
0 & 3 & -7 & -27 \\
0 & 3 & -8 & -30 \\
0 & 4 & 3 & 1
\end{array}\right) \quad R_{4} \rightarrow-R_{2}+R_{4} \\
& \longrightarrow\left(\begin{array}{ccc|c}
1 & -1 & 2 & 9 \\
0 & 3 & -7 & -27 \\
0 & 3 & -8 & -30 \\
0 & 1 & 10 & 28
\end{array}\right) \begin{array}{l}
R_{2} \rightarrow R_{4} \\
R_{4} \rightarrow R_{2}
\end{array} \longrightarrow\left(\begin{array}{ccc|c}
1 & -1 & 2 & 9 \\
0 & 1 & 10 & 28 \\
0 & 3 & -8 & -30 \\
0 & 3 & -7 & -27
\end{array}\right) \begin{array}{c}
R_{1} \rightarrow R_{2}+R_{1} \\
\\
R_{3} \rightarrow-3 R_{2}+R_{3} \\
R_{4} \rightarrow-3 R_{2}+R_{4}
\end{array} \\
& \longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & 12 & 37 \\
0 & 1 & 10 & 28 \\
0 & 0 & -38 & -114 \\
0 & 0 & -37 & -111
\end{array}\right) \begin{array}{c}
\\
R_{3} \rightarrow-R_{3} / 38 \\
R_{4} \rightarrow-R_{4} / 37
\end{array} \longrightarrow\left(\begin{array}{ccc|c|c}
1 & 0 & 12 & 37 \\
0 & 1 & 10 & 28 \\
0 & 0 & 1 & 3 \\
0 & 0 & 1 & 3
\end{array}\right) \begin{array}{c}
R_{1} \rightarrow-12 R_{3}+R_{1} \\
R_{2} \rightarrow-10 R_{3}+R_{2} \\
R_{4} \rightarrow-R_{3}+R_{4}
\end{array} \\
& \longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

The lines therefore intersect at the point $(1,-2,3)$. A vector normal to the plane is

$$
\mathbf{N}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 7 & 3 \\
17 & -14 & 5
\end{array}\right|=\langle 77,46,-133\rangle .
$$

The equation of the plane is therefore

$$
77(x-1)+46(y+2)-133(z-3)=0 \quad \Longrightarrow \quad 77 x+46 y-133 z=-414
$$

6. (a) Prove that if A, B, and C are three points in space, then the area of triangle $A B C$ can be calculated with the formula

$$
\text { Area of } \Delta A B C=\frac{1}{2}|\mathbf{A B} \times \mathbf{A C}|
$$

(b) Use the formula in part (a) to find the area of the triangle with vertices $(2,0,-3),(1,5,6)$, and $(-1,3,4)$.
(a) From the figure below, we can say that

$$
\text { Area of } \Delta A B C=\frac{1}{2}|\mathbf{A B}| h=\frac{1}{2}|\mathbf{A B} \| \mathbf{A C}| \sin \theta=\frac{1}{2}|\mathbf{A B} \times \mathbf{A C}| \text {. }
$$

(b) If we denote the vertices by $A(2,0,-3), B(1,5,6)$ and $C(-1,3,4)$, then the area of the triangle is

$$
\frac{1}{2}|\mathbf{A B} \times \mathbf{A C}|=\frac{1}{2}\left\|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
-1 & 5 & 9 \\
-3 & 3 & 7
\end{array}\right\|=\frac{1}{2}|\langle 8,-20,12\rangle|=\frac{1}{2} \sqrt{64+400+144}=\sqrt{151}
$$

