Values

9 1. Find the area bounded by the curves

$$
y=10-x^{2}, \quad y=|x|-2
$$

$$
\begin{aligned}
A & =2 \int_{0}^{3}\left[\left(10-x^{2}\right)-(x-2)\right] d x \\
& =2 \int_{0}^{3}\left(12-x-x^{2}\right) d x \\
& =2\left\{12 x-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right\}_{0}^{3} \\
& =45
\end{aligned}
$$

3 2. In one or two sentences, explain the difference between an antiderivative of a function $f(x)$, and the indefinite integral of the function.

An antiderivative of $f(x)$ is any function whose first derivative is $f(x)$. The indefinite integral of $f(x)$ is all functions whose first derivatives are $f(x)$.

6 3. Set up, but do NOT evaluate, a definite integral for the length of the curve $x=y^{3}-2 y^{2}$ between the points $(-16,-2)$ and $(-1,1)$.

$$
\begin{aligned}
L & =\int_{-2}^{1} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& =\int_{-2}^{1} \sqrt{1+\left(3 y^{2}-4 y\right)^{2}} d y
\end{aligned}
$$

9 4. Set up, but do NOT evaluate, a definite integral for the volume of the solid of revolution when the area bounded by the curves

$$
y=\sin \pi x, \quad x=\sqrt{1+y}, \quad x=0
$$

is rotated about the line $x=2$.

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi(2-x)\left[\sin \pi x-\left(x^{2}-1\right)\right] d x \\
& =\int_{0}^{1}(2-x)\left(\sin \pi x-x^{2}+1\right) d x
\end{aligned}
$$

13 5. The ends of a horizontal water trough with length 5 metres are parabolic with width $3 / 2$ metres, and depth 1 metre at the centre (see figure below). If the depth of water in the trough is $1 / 2$ metre, set up, but do NOT evaluate, a definite integral to find the work required to empty the trough to a height $1 / 2$ metre above the top of the trough. Replace all physical constants with their numerical values.

$$
\begin{aligned}
V & =\int_{0}^{1 / 2}(3 / 2-y) \rho g(5)(2 x) d y \\
& =1000(10)(9.81) \int_{0}^{1 / 2}(3 / 2-y)\left(\frac{3 \sqrt{y}}{4}\right) d y \mathrm{~J}
\end{aligned}
$$

