MATH 1710 Tutorial 2

In Problems 1–3, use definite integrals to find the areas bounded by the curves.

1.
$$3y - x = 10$$
, $y = |x + 2|$

2.
$$x = -y^3 + 3y^2 - 2y$$
, $y = 0$, $x = -\sqrt{4 - 2y}$

2.
$$x = -y^3 + 3y^2 - 2y$$
, $y = 0$, $x = -\sqrt{4 - 2y}$
3. $y = \frac{x}{\sqrt{x+6}}$, $y = -x^3$, $x = 1$

In Problems 4–8, find the volumes of the solids of revolution obtained by rotating the areas bounded by the curves about the given lines.

4.
$$y = x^2 + 4$$
, $y = 2x^2$ about $y = -1$

5.
$$y = x^2 + 4$$
, $y = 2x^2$ about $y = 8$

6.
$$x = 1 - y^2$$
, $x = 4y^2 - 4$, about $y = 2$

7.
$$x = 1 - y^2$$
, $x = 4y^2 - 4$, about $y = -1$

8.
$$y = e^{-x}$$
, $y = e^{2x}$, $y = 2$ about $y = -1$

9. Find the volume of the solid of revolution when the area inside the ellipse $x^2/a^2 + y^2/b^2 = 1$ is rotated about the x-axis.

Answers: 1. 8 2. 8/3 3. $1/4 - 22\sqrt{7}/3 + 8\sqrt{6}$ 4. $448\pi/5$ 5. $512\pi/5$

6. $80\pi/3$ **7.** $40\pi/3$ **8.** $\pi(-21/4+12\ln 2)$ **9.** $4\pi ab^2/3$