MATH 1710 Tutorial 2

In Problems 1-3, use definite integrals to find the areas bounded by the curves.

1. $3 y-x=10, \quad y=|x+2|$
2. $x=-y^{3}+3 y^{2}-2 y, \quad y=0, \quad x=-\sqrt{4-2 y}$
3. $y=\frac{x}{\sqrt{x+6}}, \quad y=-x^{3}, \quad x=1$

In Problems 4-8, find the volumes of the solids of revolution obtained by rotating the areas bounded by the curves about the given lines.
4. $y=x^{2}+4, \quad y=2 x^{2} \quad$ about $y=-1$
5. $y=x^{2}+4, \quad y=2 x^{2} \quad$ about $y=8$
6. $x=1-y^{2}, \quad x=4 y^{2}-4, \quad$ about $y=2$
7. $x=1-y^{2}, \quad x=4 y^{2}-4, \quad$ about $y=-1$
8. $y=e^{-x}, \quad y=e^{2 x}, \quad y=2 \quad$ about $y=-1$
9. Find the volume of the solid of revolution when the area inside the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ is rotated about the x-axis.
Answers: 1. 8
2. $8 / 3$ 3. $1 / 4-22 \sqrt{7} / 3+8 \sqrt{6} \quad$ 4. $448 \pi / 5$
5. $512 \pi / 5$
$\begin{array}{lll}\text { 6. } 80 \pi / 3 & \text { 7. } 40 \pi / 3 & \text { 8. } \pi(-21 / 4+12 \ln 2) \\ \text { 9. } & 4 \pi a b^{2} / 3\end{array}$

