MATH 1710 Tutorial 6

1. Find all solutions of the following equations:
(a) $3 \cos (2 x+1)=1$
(b) $2 \tan (1-3 x)=3$
(c) $\sin ^{2} x-3 \sin x+1=0$
2.(a) Express the function $f(x)=4 \cos 3 x-2 \sin 3 x, x \geq 0$, in the form $A \sin (3 x+\phi)$, where $A>0$ and $0<\phi<\pi$.
(b) Use the result in part (a) to find the third smallest value of x for which $f(x)=0$.
2. Find first derivatives of the following functions. Simplify answers as much as possible.
(a) $f(x)=\operatorname{Sec}^{-1} \sqrt{x^{2}+3 x+2}$
(b) $\quad f(x)=\frac{1}{x} \operatorname{Csc}^{-1}(3 x)-\frac{\sqrt{9 x^{2}-1}}{x}$
(c) $f(x)=\operatorname{Tan}^{-1}\left(\frac{\sqrt{2} x}{\sqrt{1+x^{4}}}\right)$
3. Find the largest value of the function

$$
f(x)=\operatorname{Cot}^{-1}\left(\frac{x}{a}\right)-\operatorname{Cot}^{-1}\left(\frac{x}{b}\right)
$$

on the interval $0 \leq x<\infty$, where $a>b>0$ are constants.
5. A pulley P fixed to the ceiling (diagram below) is 13 metres above point Q on the floor directly below P. The ends of a rope with length 39 metres is attached to carts A and $B, 1$ metre above the floor. The rope is taut, and cart A moves away from Q at 2 metres per second.
(a) Find how fast cart B is moving when the horizontal distance between A and Q is 5 metres.
(b) Use the result in part (a) to find the rate of change of angle $A P B$ when the horizontal distance between A and Q is 5 metres.

Answers

1. (a) $\frac{1}{2}\left[-1 \pm \operatorname{Cos}^{-1}\left(\frac{1}{3}\right)\right]+n \pi$
(b) $\frac{1}{3}\left[1-\operatorname{Tan}^{-1}\left(\frac{3}{2}\right)\right]+\frac{n \pi}{3}$
(c) $\operatorname{Sin}^{-1}\left(\frac{3-\sqrt{5}}{2}\right)+2 n \pi, \pi-\operatorname{Sin}^{-1}\left(\frac{3-\sqrt{5}}{2}\right)+2 n \pi$
2.(a) $2 \sqrt{5} \sin \left[3 x+\pi-\operatorname{Sin}^{-1}(2 / \sqrt{5})\right]$
(b) $\frac{1}{3}\left[2 \pi+\operatorname{Sin}^{-1}(2 / \sqrt{5})\right]$
2. (a) $\frac{2 x+3}{2\left(x^{2}+3 x+2\right)^{3 / 2} \sqrt{\left(x^{2}+3 x+2\right)^{2}-1}}$ (b) $-\frac{1}{x^{2}} \operatorname{Csc}^{-1}(3 x)-\frac{2}{x^{2} \sqrt{9 x^{2}-1}}$
(c) $\frac{\sqrt{2}\left(1-x^{2}\right)}{\left(1+x^{2}\right) \sqrt{1+x^{4}}}$
3. $\operatorname{Cot}^{-1} \sqrt{\frac{b}{a}}-\operatorname{Cot}^{-1} \sqrt{\frac{a}{b}}$
5.(a) -0.867
(b) $0.127 \mathrm{rad} / \mathrm{sec}$
