Student Name -

Student Number -

Circle your instructor's name
T. Berry
D. Trim

Values

9 1. Find the area bounded by the curves

$$
y=-\frac{x}{\sqrt{x-1}}, \quad y=0, \quad x=2, \quad x=3 .
$$

$$
A=\int_{2}^{3} \frac{x}{\sqrt{x-1}} d x
$$

If we set $u=x-1$ and $d u=d x$, then

$$
\begin{aligned}
A & =\int_{1}^{2} \frac{u+1}{\sqrt{u}} d u=\left\{\frac{2}{3} u^{3 / 2}+2 \sqrt{u}\right\}_{1}^{2} \\
& =\left(\frac{4 \sqrt{2}}{3}+2 \sqrt{2}\right)-\left(\frac{2}{3}+2\right)=\frac{10 \sqrt{2}-8}{3} .
\end{aligned}
$$

6 2. Set up, but do NOT evaluate, a definite integral to find the volume of the solid of revolution when the area bounded by the curves

$$
y=\sin x, \quad y=x^{2}-\pi x, \quad 0 \leq x \leq \pi,
$$

is rotated around the line $x=2 \pi$.
$V=\int_{0}^{\pi} 2 \pi(2 \pi-x)\left[\sin x-x^{2}+\pi x\right] d x$

5 3. Set up, but do NOT evaluate, a definite integral to find the length of the curve $y^{2}-x^{2}=4$ between the points $(-1, \sqrt{5})$ and $(2,2 \sqrt{2})$.

$$
\begin{aligned}
L= & \int_{-1}^{2} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{-1}^{2} \sqrt{1+\left(\frac{x}{\sqrt{x^{2}+4}}\right)^{2}} d x
\end{aligned}
$$

7 4. An elevator with mass 5000 kg is sitting on the first floor of a building. The elevator is lifted by a cable with mass 5 kilograms per metre of length. The length of cable from elevator to pulley at the top of the elevator shaft is 90 metres. Set up, but do NOT evaluate, a definite integral to find the work done to lift the elevator and cable a total distance of 30 metres from its present position.
$W=\int_{0}^{30} 9.81[5000+5(90-y)] d y \mathrm{~J}$

7 5. A plate is in the shape of an isosceles triangle with equal sides of length 5 metres and the third side of length 3 metres. It is suspended vertically in water with its shortest side in the surface of the water. Set up, but do NOT evaluate, a definite integral to find the force due to the water on one side of the plate.
$F=2 \int_{0}^{\sqrt{91} / 2} 9.81(1000)\left(\frac{\sqrt{91}}{2}-y\right) \frac{3 y}{\sqrt{91}} d y \mathrm{~N}$

6 6. A plate with constant mass per unit area ρ is bounded by the curves

$$
x=y^{2}-4, \quad x+2 y=4
$$

Set up, but do NOT evaluate, a definite integral to find the first moment of the plate about the y-axis.

Moment $=\int_{-4}^{2} \rho\left[\frac{\left(y^{2}-4\right)+(4-2 y)}{2}\right]\left[(4-2 y)-\left(y^{2}-4\right)\right] d y$

