Solutions to Fall 2020 Exam

8 1. Set up, but do NOT evaluate, a definite integral for the length of the curve

$$
x^{2} y+x z=2, \quad y-z=0
$$

between the points $(1,1,1)$ and $(2,1 / 3,1 / 3)$.

Let $x(t)=t$. Since $y=z$, we have $y(t)=z(t)=\frac{2}{t^{2}+t}$. Consequently,

$$
\frac{d x}{d t}=1, \quad \frac{d y}{d t}=\frac{d z}{d t}=-\frac{2(2 t+1)}{\left(t^{2}+t\right)^{2}} .
$$

The length of the curve is

$$
L=\int_{1}^{2} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t=\int_{1}^{2} \sqrt{1+2 \frac{(4 t+2)^{2}}{\left(t^{2}+t\right)^{4}}} d t
$$

2. Find the distance between the lines

$$
\left.\begin{array}{rl}
x+y & =1, \\
L_{1}: \\
x-y+2 z & =3
\end{array} \quad L_{2}: \quad \begin{array}{l}
x=2+t, \\
y=2 t, \\
z
\end{array}\right)=1+2 t .
$$

A vector along L_{1} is

$$
\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 1 & 0 \\
1 & -1 & 2
\end{array}\right|=(2,-2,-2)
$$

Since a vector along L_{2} is $(1,2,2)$, the lines are not parallel. A point on L_{1} is $P(1,0,1)$ and a point on L_{2} is $Q(2,0,1)$.

A vector along $\mathbf{R S}$ normal to both lines is

$$
\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & -1 & -1 \\
1 & 2 & 2
\end{array}\right|=(0,-3,3) .
$$

The distance between the lines is

$$
|\mathbf{P Q} \cdot \hat{\mathbf{R S S}}|=\left|(1,0,0) \cdot \frac{(0,-3,3)}{\sqrt{18}}\right|=0 .
$$

The lines therefore intersect.

6
3. Determine whether the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y^{2}}{x^{2}+y^{4}}
$$

exists. If the limit does not exist, give reason(s) for its nonexistence.

Along the curves $x=m y^{2}$, we have

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y^{2}}{x^{2}+y^{4}}=\lim _{y \rightarrow 0} \frac{2\left(m y^{2}\right) y^{2}}{\left(m y^{2}\right)^{2}+y^{4}}=\lim _{y \rightarrow 0} \frac{2 m y^{4}}{y^{4}\left(m^{2}+1\right)}=\frac{2 m}{m^{2}+1} .
$$

Since these limits depend on m, the original limit does not exist.
4. Find all critical points for the function

$$
f(x, y)=-x^{3}+4 x y-2 y^{2}+1,
$$

and classify them as giving relative maxima, relative minima, saddle points, or none of these.

From the partial derivatives

$$
f_{x}=-3 x^{2}+4 y=0, \quad f_{y}=4 x-4 y=0,
$$

we have $x=y$ and $-3 x^{2}+4 x=0$. Thus, $x=0$ and $x=4 / 3$, and the critical points are $(0,0)$ and $(4 / 3,4 / 3)$. The second partial derivatives are

$$
f_{x x}=-6 x, \quad f_{x y}=4, \quad f_{y y}=-4
$$

For $(0,0), A=0, B=4$, and $C=-4$. Hence, $B^{2}-A C=16>0$, and $(0,0)$ gives a saddle point. For $(4 / 3,4 / 3), A=-8<0, B=4$, and $C=-4$. Hence, $B^{2}-A C=-16<0$, and $(4 / 3,4 / 3)$ gives a relative maximum.

12 5. Let $z=s^{2}+t^{2}$, where s and t are functions of x and y defined by

$$
x=t^{2}-s^{2}, \quad y=t^{2}-s .
$$

Find $\frac{\partial z}{\partial x}$ when $s=-1$ and $t=1$.

The partial derivative is

$$
\frac{\partial z}{\partial x}=\frac{\partial z}{\partial s} \frac{\partial s}{\partial x}+\frac{\partial z}{\partial t} \frac{\partial t}{\partial x}
$$

From the equation for z, we have

$$
\frac{\partial z}{\partial s}=2 s \quad \Longrightarrow \quad \frac{\partial z}{\partial s}_{\mid s=-1}=-2, \left.\quad \frac{\partial z}{\partial t}=2 t \quad \Longrightarrow \quad \frac{\partial z}{\partial t} \right\rvert\, t=1 .
$$

When $s=-1$ and $t=1$, we have $x=0$ and $y=2$. Let $F=x-t^{2}+s^{2}$, and $G=y-t^{2}+s$. Then

$$
\begin{gathered}
\frac{\partial s}{\partial x}=-\frac{\frac{\partial(F, G)}{\partial(x, t)}}{\frac{\partial(F, G)}{\partial(s, t)}}=-\frac{\left|\begin{array}{cc}
F_{x} & F_{t} \\
G_{x} & G_{t}
\end{array}\right|}{\left|\begin{array}{ll}
F_{s} & F_{t} \\
G_{s} & G_{t}
\end{array}\right|}=-\frac{\left|\begin{array}{cc}
1 & -2 t \\
0 & -2 t
\end{array}\right|}{\left|\begin{array}{cc}
2 s & -2 t \\
1 & -2 t
\end{array}\right|}=-\frac{\left|\begin{array}{cc}
1 & -2 \\
0 & -2
\end{array}\right|}{\left|\begin{array}{cc}
-2 & -2 \\
1 & -2
\end{array}\right|}=\frac{1}{3} \\
\frac{\partial t}{\partial x}=-\frac{\frac{\partial(F, G)}{\partial(s, x)}}{\frac{\partial(F, G)}{\partial(s, t)}}=-\frac{\left|\begin{array}{cc}
F_{s} & F_{x} \\
G_{s} & G_{x}
\end{array}\right|}{6}=-\frac{\left|\begin{array}{cc}
2 s & 1 \\
1 & 0
\end{array}\right|}{6}=-\frac{\left|\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right|}{6}=\frac{1}{6}
\end{gathered}
$$

Thus,

$$
\frac{\partial z}{\partial x}=(-2)\left(\frac{1}{3}\right)+(2)\left(\frac{1}{6}\right)=-\frac{1}{3} .
$$

11 6. Find all points on the surface $x^{2}+y^{2}-z^{2}=1$ at which the normal line to the surface is parallel to the line

$$
x=1+3 t, \quad y=-2+2 t, \quad z=1-2 t .
$$

A normal vector to the surface $f(x, y, z)=x^{2}+y^{2}-z^{2}-1$ at a point (a, b, c) on the surface is

$$
\nabla f_{\mid(a, b, c)}=(2 x, 2 y,-2 z)_{\mid(a, b, c)}=(2 a, 2 b,-2 c) .
$$

So also is $\mathbf{n}=(a, b,-c)$. Since this vector must be parallel to $(3,2,-2)$, we have $\mathbf{n}=k(3,2,-2)$ for some constant k. Thus,

$$
a=3 k, \quad b=2 k, \quad-c=-2 k .
$$

Since point (a, b, c) is on the surface,

$$
(3 k)^{2}+(2 k)^{2}-(-2 k)^{2}=1 \quad \Longrightarrow \quad 9 k^{2}=1 .
$$

Thus, $k= \pm 1 / 3$. The points are $(1,2 / 3,2 / 3)$ and $(-1,-2 / 3,-2 / 3)$

10 7. Evaluate the double integral of the function $e^{y^{2}}$ over the area bounded by the curves

$$
y=2 x, \quad x=0, \quad y=2 .
$$

$$
\iint e^{y^{2}} d A=\int_{0}^{2} \int_{0}^{y / 2} e^{y^{2}} d x d y=\int_{0}^{2}\left\{x e^{y^{2}}\right\}_{0}^{y / 2} d y=\int_{0}^{2} \frac{y}{2} e^{y^{2}} d y=\left\{\frac{1}{4} e^{y^{2}}\right\}_{0}^{2}=\frac{1}{4}\left(e^{4}-1\right)
$$

9 8. Set up, but do NOT evaluate, a double iterated integral to find the volume of the solid of revolution when the area bounded by the curve

$$
\sqrt{x^{2}+y^{2}}=1+\frac{y}{\sqrt{x^{2}+y^{2}}}
$$

is rotated around the line $y=2$.

$V=2 \int_{-\pi / 2}^{\pi / 2} \int_{0}^{1+\sin \theta} 2 \pi(2-y) r d r d \theta=2 \int_{-\pi / 2}^{\pi / 2} \int_{0}^{1+\sin \theta} 2 \pi(2-r \sin \theta) r d r d \theta$
12 9. Find the volume bounded by the surfaces

$$
x^{2}+y^{2}-z^{2}=1, \quad x^{2}+y^{2}=2 .
$$

$$
\begin{aligned}
V & =8 \int_{0}^{\pi / 2} \int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{r^{2}-1}} r d z d r d \theta=8 \int_{0}^{\pi / 2} \int_{1}^{\sqrt{2}} r \sqrt{r^{2}-1} d r d \theta \\
& =8 \int_{0}^{\pi / 2}\left\{\frac{1}{3}\left(r^{2}-1\right)^{3 / 2}\right\}_{1}^{\sqrt{2}} d \theta=\frac{8}{3}\{\theta\}_{0}^{\pi / 2}=\frac{4 \pi}{3}
\end{aligned}
$$

9 10. Set up, but do NOT evaluate, a triple iterated integral in spherical coordinates to find the larger volume bounded by the surfaces

$$
x^{2}+y^{2}+z^{2}=a^{2}, \quad z=2 \sqrt{x^{2}+y^{2}}, \quad(a>0 \text { a constant }) .
$$

$$
V=4 \int_{0}^{\pi / 2} \int_{\operatorname{Tan}^{-1}(1 / 2)}^{\pi} \int_{0}^{a} R^{2} \sin \phi d R d \phi d \theta
$$

