Solutions to 2130 Fall Exam

1. Find parametric equations for that part of the curve

$$
2 x^{2}+y^{2}+z^{2}=9, \quad 4 x^{2}+y^{2}=4
$$

in the first octant to the left of the plane $y=x$, directed so that x decreases along the curve.
If we set $x=\cos t$ and $y=2 \sin t$, then

$$
z=\sqrt{9-2 \cos ^{2} t-4 \sin ^{2} t}
$$

When $y=x$,

$$
\cos t=2 \sin t \quad \Longrightarrow \quad \tan t=\frac{1}{2} \quad \Longrightarrow \quad t=\operatorname{Tan}^{-1}(1 / 2)
$$

Values $0<t<\operatorname{Tan}^{-1}(1 / 2)$ yield the curve in the correct direction.
2. Find the equation of the plane that contains the lines

$$
\begin{array}{rlr}
x & =t+1, \\
L_{1}: y & =7 t-3, \\
z & =3+4 t
\end{array} \quad L_{2}: \begin{aligned}
& x+y-2 z=0 \\
& 3 x-y+z=0
\end{aligned}
$$

A vector along L_{1} is $\mathbf{v}_{1}=(1,7,4)$. A vector along L_{2} is

$$
\mathbf{v}_{2}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 1 & -2 \\
3 & -1 & 1
\end{array}\right|=(-1,-7,-4)
$$

The lines are therefore parallel. Since $P(1,-3,3)$ is a point on L_{1} and $Q(0,0,0)$ is a point on L_{2}, a vector in the required plane is $\mathbf{Q P}=(1,-3,3)$. A normal to the required plane is

$$
\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 7 & 4 \\
1 & -3 & 3
\end{array}\right|=(33,1,-10) .
$$

The equation of the plane is

$$
33(x-0)+(y-0)-10(x-0)=0 \quad \Longrightarrow \quad 33 x+y-10 z=0 .
$$

3. Find the angle between the tangent line to the curve

$$
x=t^{2}+3, \quad y=3-t, \quad z=4+t^{2}
$$

and the normal vector to the surface

$$
x+y^{2}-z=-1
$$

at their point of intersection.
To find the point of intersection, we solve

$$
\left(t^{2}+3\right)+(3-t)^{2}-\left(4+t^{2}\right)=-1 \quad \Longrightarrow \quad(3-t)^{2}=0 \quad \Longrightarrow \quad t=3
$$

The point of intersection is therefore $(12,0,13)$. A tangent vector to the curve at this point is

$$
\mathbf{T}(3)=(2 t,-1,2 t)_{\mid t=3}=(6,-1,6) .
$$

A normal vector to the surface at $(12,0,13)$ is

$$
\nabla\left(x+y^{2}-z+1\right)_{\mid(12,0,13)}=(1,2 y,-1)_{\mid(12,0,13)}=(1,0,-1) .
$$

Since $(6,-1,6) \cdot(1,0,-1)=0$, the tangent vector and normal vector are perpendicular. The angle between them is therefore $\pi / 2$ radians.
4. You are given that

$$
z=f(u, v, x), \quad u=g(x, y), \quad v=h(x), \quad y=k(x)
$$

Find an expression for $d z / d x$ in terms of derivatives of the given functions. In all partial derivatives indicate variables that are being held constant. Be sure that your penmenship distinguishes between $d^{\prime} s$ and ∂ 's.

From the schematic,

$$
\left.\left.\left.\left.\left.\left.\frac{d z}{d x}=\frac{\partial z}{\partial u}\right)_{v, x} \frac{\partial u}{\partial x}\right)_{y}+\frac{\partial z}{\partial u}\right)_{v, x} \frac{\partial u}{\partial y}\right)_{x} \frac{d y}{d x}+\frac{\partial z}{\partial v}\right)_{u, x} \frac{d v}{d x}+\frac{\partial z}{\partial x}\right)_{u, v} .
$$

5. In what directions, if any, is the rate of change of the function

$$
f(x, y, z)=x^{2} y z+x z e^{y}
$$

at the point $(1,0,-2)$ equal to -5 ?
We calculate

$$
\nabla f_{\mid(1,0,-2)}=\left(2 x y z+z e^{y}, x^{2} z+x z e^{y}, x^{2} y+x e^{y}\right)_{\mid(1,0,-2)}=(-2,-4,1) .
$$

The minimum rate of increase of the function is $-\sqrt{(-2)^{2}+(-4)^{2}+1^{2}}=-\sqrt{21}$. Thus, there is no direction in which the rate of change is -5 .
6. Find the minimum value of the function

$$
f(x, y)=2 x^{2}+x y-2 x
$$

on the region bounded by the lines

$$
y=0, \quad x=0, \quad 2 x+y=2 .
$$

For critical points inside the region, we solve

$$
0=f_{x}=4 x+y-2, \quad 0=f_{y}=x .
$$

The only critical point is $(0,2)$ at which $f(0,2)=0$. On C_{3}, where $x=0$, $f(0, y)=0$. On C_{2}, where $y=2-2 x$,

$$
f(x, 2-2 x)=2 x^{2}+x(2-2 x)-2 x=0 .
$$

On C_{1}, where $y=0$,

$$
g(x)=f(x, 0)=2 x^{2}-2 x, \quad 0 \leq x \leq 1 .
$$

For critical values, we solve

$$
0=g^{\prime}(x)=4 x-2 \quad \Longrightarrow \quad x=1 / 2 .
$$

We evaluate

$$
g(0)=0, \quad g(1 / 2)=-1 / 2, \quad g(1)=0 .
$$

The minimum value is therefore $-1 / 2$.
7. Evaluate the double integral of the function $f(x, y)=\sqrt{1-y^{3}}$ over the region bounded by the curves

$$
\begin{aligned}
& y=\sqrt{x}, \quad y=1, \quad x=0 . \\
& \iint_{R} \sqrt{1-y^{3}} d A=\int_{0}^{1} \int_{0}^{y^{2}} \sqrt{1-y^{3}} d x d y \\
&=\int_{0}^{1} y^{2} \sqrt{1-y^{3}} d y \\
&=\left\{-\frac{2}{9}\left(1-y^{3}\right)^{3 / 2}\right\}_{0}^{1} \\
&=\frac{2}{9}
\end{aligned}
$$

8. Set up, but do NOT evaluate, a double iterated integral to find the first moment about the line $y-x=1$ of a mass of density $\rho(x, y)=x^{2}+y$ bounded by the curves

$$
y=x^{2}, \quad y=-x, \quad x=1 .
$$

right of the line as positive. Then the moment is

$$
\int_{0}^{1} \int_{-x}^{x^{2}}\left(x^{2}+y\right)\left(\frac{|y-x-1|}{\sqrt{2}}\right) d y d x=\int_{0}^{1} \int_{-x}^{x^{2}}\left(x^{2}+y\right)\left(\frac{x-y+1}{\sqrt{2}}\right) d y d x
$$

9. Set up, but do NOT evaluate, a double iterated integral in polar coordinates to find the surface area of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies outside the cylinder $x^{2}+y^{2}=1$.

If R is the area in the first quadrant onto which the surface of the sphere projects, then

$$
\begin{aligned}
A & =8 \iint_{R} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A \\
& =8 \iint_{R} \sqrt{1+\left(\frac{-x}{\sqrt{4-x^{2}-y^{2}}}\right)^{2}+\left(\frac{-y}{\sqrt{4-x^{2}-y^{2}}}\right)^{2}} d A \\
& =8 \iint_{R} \sqrt{\frac{4}{4-x^{2}-y^{2}}} d A=8 \int_{0}^{\pi / 2} \int_{1}^{2} \sqrt{\frac{4}{4-r^{2}}} r d r d \theta .
\end{aligned}
$$

10. Evaluate the triple integral

$$
\iiint_{W} y d V
$$

where the region W is bounded by

$$
\begin{aligned}
& y=x^{2}, \quad y+z=1, \quad z=0 . \\
& \iiint_{W} y d V=\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} y d z d y d x \\
&=\int_{-1}^{1} \int_{x^{2}}^{1} y(1-y) d y d x \\
&=\int_{-1}^{1}\left\{\frac{y^{2}}{2}-\frac{y^{3}}{3}\right\}_{x^{2}}^{1} d x \\
&=\int_{-1}^{1}\left(\frac{1}{6}-\frac{x^{4}}{2}+\frac{x^{6}}{3}\right) d x \\
&=\left\{\frac{x}{6}-\frac{x^{5}}{10}+\frac{x^{7}}{21}\right\}_{-1}^{1}=\frac{8}{35}
\end{aligned}
$$

10 11. Express, but do NOT evaluate, the triple iterated integral

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{1-x^{2}-y^{2}} z d z d y d x
$$

in (a) cylindrical coordinates, (b) spherical coordinates.
Because of the symmetry of the
volume about the $y z$-plane, we can double the integral over the volume in the first octant.
(a) If denote the integral by I, then in cylindrical coordinates,

$$
I=2 \int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{1-r^{2}} z r d z d r d \theta
$$

(b) In spherical coordinates, the equation of the paraboloid is

$$
\mathcal{R} \cos \phi=1-\mathcal{R}^{2} \sin ^{2} \phi \quad \Longrightarrow \quad \mathcal{R}^{2} \sin ^{2} \phi+\mathcal{R} \cos \phi-1=0 .
$$

When we solve for \mathcal{R},

$$
\mathcal{R}=\frac{-\cos \phi \pm \sqrt{\cos ^{2} \phi+4 \sin ^{2} \phi}}{2 \sin ^{2} \phi}
$$

For \mathcal{R} to be positive, we must choose the plus sign, in which case

$$
I=2 \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{\left(-\cos \phi+\sqrt{\cos ^{2} \phi+4 \sin ^{2} \phi}\right) /\left(2 \sin ^{2} \phi\right)}(\mathcal{R} \cos \phi) \mathcal{R}^{2} \sin \phi d \mathcal{R} d \phi d \theta
$$

