2130 Exam Solutions for Fall 2022

1. Set up, but do NOT evaluate, a definite integral for the length of the curve

$$
x^{2}+y+z=6, \quad 2 x-y+z=8
$$

between the points $(2,-1,3)$ and $(-2,-5,7)$. Simplify the integrand as much as possible.
If we set $x=t$, then

$$
t^{2}+y+z=6, \quad 2 t-y+z=8
$$

When we solve for y and z, parametric equations of the curve are

$$
x=t, \quad y=-1+t-t^{2} / 2, \quad z=7-t-t^{2} / 2, \quad-2 \leq t \leq 2 .
$$

The length of the curve is

$$
L=\int_{-2}^{2} \sqrt{1+(1-t)^{2}+(-1-t)^{2}} d t=\int_{-2}^{2} \sqrt{3+2 t^{2}} d t .
$$

2. Find the unit tangent vector to the curve

$$
x=-t^{3}, \quad y=2 t^{2}, \quad z=3 t^{3}-t^{2}
$$

at the point $(0,0,0)$.
A tangent vector to the curve is

$$
\mathbf{T}=\left(-3 t^{2}, 4 t, 9 t^{2}-2 t\right)=t(-3 t, 4,9 t-2)
$$

So also is the vector $(-3 t, 4,9 t-2)$. At $t=0$, a tangent vector is $(0,4,-2)$, and therefore the unit tangent vector is $\frac{(0,2,-1)}{\sqrt{5}}$.
3. (a) Determine whether the following lines are parallel or skew

$$
L_{1}: x=1+t, \quad y=2-t, \quad z=2 t \quad L_{2}: x+5=4-y=\frac{z-1}{2}
$$

(b) Find the distance between the lines.
(a) Since a vector along each line is $(1,-1,2)$, the lines are parallel.
(b) The distance $|\mathbf{P R}|$ between the lines is given by

$$
\begin{aligned}
|\mathbf{P R}| & =|\mathbf{P Q}| \sin \theta=|\mathbf{P Q}||\widehat{\mathbf{Q R}}| \sin \theta \\
& =|\mathbf{P Q} \times \widehat{\mathbf{Q R}}|=\frac{1}{\sqrt{6}} \| \begin{array}{|ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
-6 & 2 & 1 \\
1 & -1 & 2
\end{array}| | \\
& =\frac{1}{\sqrt{6}}|(5,13,4)|=\sqrt{35} .
\end{aligned}
$$

4. Find an expression for $\frac{\partial z}{\partial t}$ if $z=f(x, y, u, t), x=g(y, u)$, and $u=h(t)$. In each partial derivative indicate which variable(s) are held constant.

From the schematic to the right,

$$
\left.\left.\left.\left.\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x}\right)_{y, u, t} \frac{\partial x}{\partial u}\right)_{y} \frac{d u}{d t}+\frac{\partial z}{\partial u}\right)_{x, y, t} \frac{d u}{d t}+\frac{\partial z}{\partial t}\right)_{x, y, u} .
$$

5. (a) Find parametric equations for the line normal to the surface $z=6-x^{2}-y^{2}$ at the point $(1,2,1)$.
(b) Find the points on the line in part (a) $\sqrt{21}$ units away from the surface.
(a) A vector normal to the surface at the point $(1,2,1)$ is

$$
\nabla\left(x^{2}+y^{2}+z-6\right)_{\mid(1,2,1)}=(2 x, 2 y, 1)_{\mid(1,2,1)}=(2,4,1) .
$$

Parametric equations for the normal line are therefore

$$
x=1+2 t, \quad y=2+4 t, \quad z=1+t .
$$

(b) Since the distance between a point (x, y, z) on the normal line and $(1,2,1)$ is $\sqrt{(x-1)^{2}+(y-2)^{2}+(z-1)^{2}}=\sqrt{(1+2 t-1)^{2}+(2+4 t-2)^{2}+(1+t-1)^{2}}=\sqrt{21 t^{2}}=\sqrt{21}|t|$, this will be $\sqrt{21}$ when $t= \pm 1$. These values of t give the points $(3,6,2)$ and $(-1,-2,0)$.
6. Find the maximum value of the function $f(x, y)=x y\left(1-x^{2}-y\right)$ on the region bounded by the curves

$$
y=1-x^{2}, \quad y=0
$$

For critical points inside the region, we solve

$$
\begin{aligned}
& 0=f_{x}=y\left(1-x^{2}-y\right)-2 x(x y)=y\left(1-y-3 x^{2}\right) \\
& 0=f_{y}=x\left(1-x^{2}-y\right)-x y=x\left(1-x^{2}-2 y\right)
\end{aligned}
$$

Obvious solutions are $(0,0),(0,1)$, and $(\pm 1,0)$. When we set

$$
1-y-3 x^{2}=0, \quad 1-x^{2}-2 y=0
$$

we get

$$
0=1-x^{2}-2\left(1-3 x^{2}\right) \quad \Longrightarrow \quad 5 x^{2}=1 \quad \Longrightarrow \quad x= \pm \frac{1}{\sqrt{5}} .
$$

Two additional critical points are therefore $(\pm 1 / \sqrt{5}, 2 / 5)$. We evaluate

$$
f(0,0)=0, \quad f(0,1)=0, \quad f(\pm 1,0)=0, \quad f(\pm 1 / \sqrt{5}, 2 / 5)= \pm 4 \sqrt{5} / 125 .
$$

On edge $C_{1}, f(x, 0)=0$. On edge C_{2},

$$
f\left(x, 1-x^{2}\right)=x\left(1-x^{2}\right)\left(1-x^{2}-1+x^{2}\right)=0
$$

The maximum value of the function is therefore $4 \sqrt{5} / 125$.

7. Set up, but do NOT evaluate, a double iterated integral to find the volume of the solid of revolution when the area bounded by the curves

$$
y=x^{3}, \quad x+y=2, \quad y=0
$$

is rotated around the line $y=x+2$. Simplify the integrand as much as possible.

$$
\begin{aligned}
V & =\int_{0}^{1} \int_{y^{1 / 3}}^{2-y} 2 \pi \frac{|y-x-2|}{\sqrt{2}} d x d y \\
& =\sqrt{2} \pi \int_{0}^{1} \int_{y^{1 / 3}}^{2-y}(x+2-y) d x d y
\end{aligned}
$$

8. Set up, but do NOT evaluate, a double iterated integral to find the force due to oil pressure on one side of a plate bounded by the curves

$$
y=2 x^{2}-4, \quad y=0
$$

when the plate is submerged vertically in oil with density 915 kilograms per cubic metre if its top edge is one metre below the surface of the oil. (x and y are measured in metres.)
$F=2 \int_{0}^{\sqrt{2}} \int_{2 x^{2}-4}^{0} 915(9.81)(1-y) d y d x \quad \mathrm{~N}$

9. Evaluate the double integral

$$
\iint_{R} \sqrt{x^{2}+y^{2}} d A
$$

where R is the region bounded by the curve $x^{2}+y^{2}=2 x$.

$$
\begin{aligned}
I & =\iint_{R} \sqrt{x^{2}+y^{2}} d A=2 \int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta}(r) r d r d \theta \\
& =2 \int_{0}^{\pi / 2}\left\{\frac{r^{3}}{3}\right\}_{0}^{2 \cos \theta} d \theta=\frac{2}{3} \int_{0}^{\pi / 2} 8 \cos ^{3} \theta d \theta \\
& =\frac{16}{3} \int_{0}^{\pi / 2} \cos \theta\left(1-\sin ^{2} \theta\right) d \theta \\
& =\frac{16}{3}\left\{\sin \theta-\frac{1}{3} \sin ^{3} \theta\right\}_{0}^{\pi / 2}=\frac{32}{9}
\end{aligned}
$$

10. Set up, but do NOT evaluate, a double iterated integral to find the first moment of a plate with constant mass per unit area ρ about the line $y=x$ if its edges are defined by the curves

$$
y=e^{x}, \quad y=1-2 x, \quad x=1
$$

Simplify the integrand as much as possible. State any assumptions made in your simplification.
If we assume distances to the right of the line are positive, then

$$
\begin{aligned}
\text { Moment } & =\int_{0}^{1} \int_{1-2 x}^{e^{x}} \frac{|y-x|}{\sqrt{2}} \rho d y d x \\
& =\frac{\rho}{\sqrt{2}} \int_{0}^{1} \int_{1-2 x}^{e^{x}}(x-y) d y d x .
\end{aligned}
$$

11. Set up, but do NOT evaluate, a triple iterated integral in cylindrical coordinates to evaluate the triple integral of the function $f(x, y, z)=z\left(x^{2}+y^{2}\right)$ over the region V bounded by the surfaces

$$
z=\sqrt{x^{2}+y^{2}}, \quad z=2-x^{2}-y^{2} .
$$

Simplify the integrand as much as possible.

$$
\begin{aligned}
\iiint_{V} z\left(x^{2}+y^{2}\right) d V & =4 \int_{0}^{\pi / 2} \int_{0}^{1} \int_{r}^{2-r^{2}} z\left(r^{2}\right) r d z d r d \theta \\
& =4 \int_{0}^{\pi / 2} \int_{0}^{1} \int_{r}^{2-r^{2}} r^{3} z d z d r d \theta
\end{aligned}
$$

12. Evaluate the triple integral

$$
\iiint_{V} x d V
$$

where V is the volume bounded by the surfaces

$$
x+y+z=1, \quad x=0, \quad y=0, \quad z=0 .
$$

$$
\begin{aligned}
\iiint_{V} x d V & =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} x d z d y d x \\
& =\int_{0}^{1} \int_{0}^{1-x} x(1-x-y) d y d x \\
& =\int_{0}^{1}\left\{-\frac{x}{2}(1-x-y)^{2}\right\}_{0}^{1-x} d x \\
& =\frac{1}{2} \int_{0}^{1} x(1-x)^{2} d x \\
& =\frac{1}{2} \int_{0}^{1}\left(x-2 x^{2}+x^{3}\right) d x \\
& =\frac{1}{2}\left\{\frac{x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{x^{4}}{4}\right\}_{0}^{1}=\frac{1}{24}
\end{aligned}
$$

