8

1. Show that the lines

$$
L_{1}: \quad \begin{aligned}
& x=3+t, \\
& y=2-t, \\
& z=4+2 t ;
\end{aligned} \quad \text { and } \quad L_{2}: \quad \begin{array}{r}
x+2 y-3 z=4, \\
2 x-y=6
\end{array}
$$

are not parallel, and find the shortest distance between them.

A vector along L_{1} is $\mathbf{v}_{1}=(1,-1,2)$. A vector along L_{2} is

$$
\mathbf{v}_{2}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 2 & -3 \\
2 & -1 & 0
\end{array}\right|=(-3,-6,-5)
$$

Since these vectors are not multiples of each other, the lines are not parallel.
A point on L_{1} is $R(3,2,4)$, and a point on L_{2} is $S(0,-6,-16 / 3)$. A vector normal to both lines is

$$
\mathbf{N}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & -1 & 2 \\
3 & 6 & 5
\end{array}\right|=(-17,1,9)
$$

The distance between the lines is

$$
|\mathbf{R S} \cdot \hat{\mathbf{N}}|=\left|(-3,-8,-28 / 3) \cdot \frac{(-17,1,9)}{\sqrt{17^{2}+1+81}}\right|=\frac{41}{\sqrt{371}} .
$$

2. (a) Find parametric equations for the curve

$$
z=2 x^{2}+y^{2}, \quad x^{2}+(y-1)^{2}=4
$$

Direction along the curve is your choice.
(b) Use your equations in part (a) to set up a definite integral for the length of the curve. Do NOT evaluate the integral, nor simplify the integrand.
(a) Parametric equations for the curve are

$$
x=2 \cos t, \quad y=1+2 \sin t, \quad z=8 \cos ^{2} t+(1+2 \sin t)^{2}, \quad 0 \leq t \leq 2 \pi .
$$

(b) The length of the curve is given by

$$
\int_{0}^{2 \pi} \sqrt{(-2 \sin t)^{2}+(2 \cos t)^{2}+[-16 \cos t \sin t+2(1+2 \sin t)(2 \cos t)]^{2}} d t
$$

5 3. Evaluate the following limit, or show that it does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-3 x y e^{x}+y^{2}}{x^{2}+y^{2}}
$$

If we approach the origin along straight lines by setting $y=m x$, then along these lines

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-3 x y e^{x}+y^{2}}{x^{2}+y^{2}} & =\lim _{x \rightarrow 0}\left(\frac{x^{2}-3 m x^{2} e^{x}+m^{2} x^{2}}{x^{2}+m^{2} x^{2}}\right)=\lim _{x \rightarrow 0}\left(\frac{1-3 m e^{x}+m^{2}}{1+m^{2}}\right) \\
& =\frac{1-3 m+m^{2}}{1+m^{2}}
\end{aligned}
$$

Since this result depends on m, the original limit does not exist.
4. Find the components of the gradient of the function

$$
f(x, y, z)=x^{2} y+3 x z-4
$$

at the point $(2,-1,3)$ in directions normal to the surface

$$
\begin{gathered}
x^{2} y z+3 x y+z+15=0 . \\
\nabla f_{\mid(2,-1,3)}=\left(2 x y+3 z, x^{2}, 3 x\right)_{\mid(2,-1,3)}=(5,4,6)
\end{gathered}
$$

A normal vector to the surface is

$$
\nabla\left(x^{2} y z+3 x y+z+15\right)_{\mid(2,-1,3)}=\left(2 x y z+3 y, x^{2} z+3 x, x^{2} y+1\right)_{\mid(2,-1,3)}=(-15,18,-3) .
$$

So also is $(5,-6,1)$. The components of the gradient in the directions $\pm(5,-6,1)$ are

$$
(5,4,6) \cdot\left[\frac{ \pm(5,-6,1)}{\sqrt{62}}\right]=\frac{ \pm 7}{\sqrt{62}} .
$$

4
5. Find the unit tangent vector to the curve

$$
x=(t-1)^{3}, \quad y=3(t-1)^{2}, \quad z=-(t-1)^{2}
$$

at the point $(0,0,0)$.

A tangent vector to the curve is

$$
\mathbf{T}=\left(3(t-1)^{2}, 6(t-1),-2(t-1)\right)=(t-1)(3(t-1), 6,-2)
$$

If we remove the $t-1$ before the vector, we change its length, but not its direction. Thus, a tangent vector to the curve is also $\mathbf{T}_{1}=(3 t-3,6,-2)$. Since $t=1$ gives the point $(0,0,0)$ on the curve, a tangent vector at the origin is $(0,6,-2)$, and the unit tangent vector is $(0,6,-2) / \sqrt{40}=$ $(0,3,-1) / \sqrt{10}$.

4
6. Prove that when $f(t)$ is a differentiable scalar function, and $\mathbf{v}(t)$ is a vector function with differentiable components, then

$$
\frac{d}{d t}[f(t) \mathbf{v}(t)]=\frac{d f}{d t} \mathbf{v}+f(t) \frac{d \mathbf{v}}{d t}
$$

If we set $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, then

$$
\frac{d}{d t}[f(t) \mathbf{v}(t)]=\frac{d}{d t}\left(f(t) v_{1} \hat{\mathbf{i}}+f(t) v_{2} \hat{\mathbf{j}}+f(t) v_{3} \hat{\mathbf{k}}\right)
$$

To differentiate a vector, we differentiate its components,

$$
\begin{aligned}
\frac{d}{d t}[f(t) \mathbf{v}(t)] & =\left(\frac{d f}{d t} v_{1}+f(t) \frac{d v_{1}}{d t}\right) \hat{\mathbf{i}}+\left(\frac{d f}{d t} v_{2}+f(t) \frac{d v_{2}}{d t}\right) \hat{\mathbf{j}}+\left(\frac{d f}{d t} v_{3}+f(t) \frac{d v_{3}}{d t}\right) \hat{\mathbf{k}} \\
& =\frac{d f}{d t}\left(v_{1} \hat{\mathbf{i}}+v_{2} \hat{\mathbf{j}}+v_{3} \hat{\mathbf{k}}\right)+f(t)\left(\frac{d v_{1}}{d t} \hat{\mathbf{i}}+\frac{d v_{2}}{d t} \hat{\mathbf{j}}+\frac{d v_{3}}{d t} \hat{\mathbf{k}}\right) \\
& =\frac{d f}{d t} \mathbf{v}+f(t) \frac{d \mathbf{v}}{d t}
\end{aligned}
$$

