4

1. Find the projection of the curve

$$
x+y+z=1, \quad x^{2}-y^{2}-z=0
$$

in the $x y$-plane. Is the projection a circle, ellipse, parabola, hyperbola, or none of these?

When we eliminate z between the equations,

$$
x+y+x^{2}-y^{2}=1 \quad \Longrightarrow \quad(x+1 / 2)^{2}-(y-1 / 2)^{2}=1
$$

This is the equation of a hyperbola.
2. (a) Prove that the following lines are not parallel, and find the shortest distance between them.

$$
L_{1}: \quad \begin{aligned}
& x=1-2 t, \\
& y=3+5 t, \\
& z=-2+t ;
\end{aligned} \quad \text { and } \quad L_{2}: \quad \frac{x-4}{-2}=\frac{2 y+6}{5}=z+5 .
$$

(b) Explain why it is unnecessary to prove in part (a) that the lines do not intersect.
(a) A vector along L_{1} is $\mathbf{v}_{1}=(-2,5,1)$, and a vector along L_{2} is $(-2,5 / 2,1)$ or $\mathbf{v}_{2}=(-4,5,2)$. Because neither vector is a multiple of the other, the vectors are not parallel, and therefore the lines are not parallel.
A vector perpendicular to both lines is

$$
\mathbf{N}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
-2 & 5 & 1 \\
-4 & 5 & 2
\end{array}\right|=(5,0,10)
$$

Since $P(1,3,-2)$ is a point on L_{1}, and $Q(4,-3,-5)$ is a point on L_{2}, the shortest distance between the lines is

$$
|\mathbf{P Q} \cdot \hat{\mathbf{N}}|=\left|(3,-6,-3) \cdot \frac{(1,0,2)}{\sqrt{5}}\right|=\frac{3}{\sqrt{5}} .
$$

(b) If the lines were to intersect, the distance in part (a) would turn out to be 0 .
3. Find all unit tangent vectors to the curve

$$
z=3-2 x^{2}-2 y^{2}, \quad x+y^{2}=4
$$

at the point $(3,-1,-17)$.

Parametric equations for the curve are

$$
x=4-t^{2}, \quad y=t, \quad z=3-2\left(4-t^{2}\right)^{2}-2 t^{2}=-29+14 t^{2}-2 t^{4}
$$

A tangent vector to the curve at any point is

$$
\mathbf{T}(t)=\left(-2 t, 1,28 t-8 t^{3}\right)
$$

Since $t=-1$ gives the point $(3,-1,-17)$ on the curve, a tangent vector at this point is

$$
\mathbf{T}(-1)=(2,1,-20)
$$

The two unit tangent vectors to the curve at $(3,-1,-17)$ are

$$
\pm \frac{(2,1,-20)}{\sqrt{405}}
$$

4. (a) Prove that the following lines intersect

$$
\begin{array}{rlrl}
L_{1}: & x+2 y+z & =-1, & L_{2}: \\
x+y & =1 ; & & =1+2 t \\
& =3-t \\
& z=1+3 t
\end{array}
$$

(b) Find the equation of the plane that contains the lines. Simplify the equation.
(a) If we substitute $x=1+2 t$ and $y=3-t$ into $x+y=1$, we get

$$
(1+2 t)+(3-t)=1 \quad \Longrightarrow \quad t=-3
$$

Substitution of $t=-3$ into the parametric equations for L_{2} gives the point $(-5,6,-8)$. Since this point satisfies the equations for L_{2}, it is the point of intersection of the lines.
(b) A vector along L_{1} is

$$
\mathbf{v}_{1}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 2 & 1 \\
1 & 1 & 0
\end{array}\right|=(-1,1,-1)
$$

Since a vector along L_{2} is $\mathbf{v}_{2}=(2,-1,3)$, a vector normal to the required plane is

$$
\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
-1 & 1 & -1 \\
2 & -1 & 3
\end{array}\right|=(2,1,-1)
$$

The equation of the plane is therefore

$$
2(x+5)+(y-6)-(z+8)=0 \quad \Longrightarrow \quad 2 x+y-z=4
$$

