MATH 2130 Test 1 October 4, 202260 minutes

7

1. (a) Find equations for the projection of the curve

$$
x^{2}+3 y^{2}+z^{2}=9, \quad 2 x+z=2
$$

in the $x z$-plane.
(b) What are the equations of the projection in the $x y$-plane?
(a) Equations for the projection in the $x z$-plane are

$$
2 x+z=2, \quad y=0 .
$$

But we only take part of the line. To find which part, we set $y=0$ and $z=2-2 x$ in the equation of the ellipsoid,

$$
x^{2}+(2-2 x)^{2}=9 \quad \Longrightarrow \quad 5 x^{2}-8 x-5=0 \quad \Longrightarrow \quad x=\frac{8 \pm \sqrt{64+100}}{10}=\frac{4 \pm \sqrt{41}}{5} .
$$

Thus, we take $\frac{4-\sqrt{41}}{5} \leq x \leq \frac{4+\sqrt{41}}{5}$.
(b) Equations for the projection in the $x y$-plane are

$$
x^{2}+3 y^{2}+(2-2 x)^{2}=9, \quad z=0
$$

2. Find, if possible, the equation for the plane that contains the lines

$$
\begin{aligned}
& z=2 t ;
\end{aligned}
$$

A vector along L_{1} is $\mathbf{v}_{1}=(-2,6,2)$, and one along L_{2} is

$$
\mathbf{v}_{2}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
3 & 2 & -1 \\
1 & -1 & 1
\end{array}\right|=(1,-4,-5)
$$

Since these vectors are not multiples, the lines are not parallel. To make a plane, they must intersect. To show this, we substitute the parametric equations of L_{1} into the second of the equations for L_{2},

$$
(3-2 t)-(-4+6 t)+(2 t)=1 \quad \Longrightarrow \quad-6 t=-6 \quad \Longrightarrow \quad t=1
$$

This gives the point ($1,2,2$), which satisfies the first of equations L_{2}. A vector normal to the plane is

$$
\mathbf{N}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
-2 & 6 & 2 \\
1 & -4 & -5
\end{array}\right|=(-22,-8,2)
$$

as is $(11,4,-1)$. The equation of the plane is therefore $11(x-1)+4(y-2)-(z-2)=0$.
3. Find, if possible, point(s) on the curve

$$
x=t^{2}+1, \quad y=3 t-3, \quad z=1-t^{2}
$$

where a tangent vector to the curve is parallel to the vector $(1,-3,-1)$.

Since a tangent vector to the curve is $(2 t, 3,-2 t)$, it will be parallel to $(1,-3,-1)$ if these exist a scalar λ such that

$$
(2 t, 3,-2 t)=\lambda(1,-3,-1)
$$

When we equate components,

$$
2 t=\lambda, \quad 3=-3 \lambda, \quad-2 t=-\lambda .
$$

These imply thaat $\lambda=-1$ and $t=-1 / 2$. Thus, there is only one point $(5 / 4,-9 / 2,3 / 4)$.

11 4. Find the distance from the point $(3,-1,3)$ to the line

$$
x=4-t, \quad y=2+2 t, \quad z=-1+3 t .
$$

$$
\begin{aligned}
d & =|\mathbf{P Q}| \sin \theta=|\mathbf{P Q}| \widehat{\mathbf{Q R}} \mid \sin \theta \\
& =|\mathbf{P Q} \times \widehat{\mathbf{Q R}}|
\end{aligned}
$$

Since a vector along $\mathbf{Q R}$ is $(-1,2,3)$,

$$
\widehat{\mathbf{Q R}}=\frac{ \pm(-1,2,3)}{\sqrt{14}}
$$

Since $Q(4,2,-1)$ is on the line $\mathbf{P Q}=(1,3,-4)$.
 Thus,

$$
d=\left\|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 3 & -4 \\
-1 / \sqrt{14} & 2 / \sqrt{14} & 3 / \sqrt{14}
\end{array}\right\|=\frac{1}{\sqrt{14}}|(17,1,5)|=\frac{\sqrt{315}}{\sqrt{14}} .
$$

