MATH 2130 Test 1 October 10, 2023

6

1. Find equations for the projection of the curve

$$
z=x^{2}+y^{2}, \quad 3 x+2 y+z=4
$$

in the $x y$-plane. Describe the projection in detail.

Equations for the projection are

$$
x^{2}+y^{2}=4-3 x-2 y, \quad z=0
$$

When we complete squares in the first equation,

$$
(x+3 / 2)^{2}+(y+1)^{2}=4+9 / 4+1=29 / 4
$$

This is the equation of a circle with centre $(-3 / 2,-1)$ and radius $\sqrt{29} / 2$.
2. Set up, but do NOT evaluate, a definite integral for the length of the curve

$$
x+y+z=4, \quad x^{2}+y^{2}=4 y
$$

You need not simplify the integrand.

If we set $x=2 \cos t$ and $y=2+2 \sin t$, then

$$
z=4-2 \cos t-2-2 \sin t=2-2 \cos t-2 \sin t, \quad 0 \leq t \leq 2 \pi
$$

The length of the curve is given by

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{(-2 \sin t)^{2}+(2 \cos t)^{2}+(2 \sin t-2 \cos t)^{2}} d t
\end{aligned}
$$

12 3. Find, if possible, the equation for the plane that contains the lines

$$
\begin{aligned}
& L_{1}: \quad \begin{array}{l}
x
\end{array}=-1+2 t, \\
& y=-5+3 t, \\
& z=2-t ;
\end{aligned} \quad \text { and } \quad L_{2}: \quad x+y-z=-2, ~ \begin{aligned}
& \\
& 2 x-3 y+2 z=10 .
\end{aligned}
$$

A vector along L_{1} is $\mathbf{v}_{1}=(2,3,-1)$. A vector along L_{2} is

$$
\mathbf{v}_{2}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 1 & -1 \\
2 & -3 & 2
\end{array}\right|=(-1,-4,-5)
$$

Since these vectors are not multiples, the lines are not parallel. To see whether they intersect, we set

$$
(-1+2 t)+(-5+3 t)-(2-t)=-2 \quad \Longrightarrow \quad 6 t=6 \quad \Longrightarrow \quad t=1 .
$$

This gives the point $(1,-2,1)$ as the point of intersection of L_{1} and the plane $x+y-z=2$. Since this point also satisfies $2 x-3 y+2 z=10$, the lines intersect at $(1,-2,1)$. A normal vector to the required plane is

$$
\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
2 & 3 & -1 \\
1 & 4 & 5
\end{array}\right|=(19,-11,5)
$$

The equation of the required plane is

$$
19(x-1)-11(y+2)+5(z-1)=0 .
$$

4. Find the distance between the lines

$$
L_{1}: \quad \begin{aligned}
& x=1+2 t, \\
& y=-2+t, \\
& z=3-4 t ;
\end{aligned} \quad \text { and } \quad L_{2}: \begin{aligned}
& 2 x+y-z=-3, \\
& x-y+2 z=9 .
\end{aligned}
$$

Vectors along these lines are

$$
\mathbf{v}_{1}=(2,1,-4) \quad \text { and } \quad \mathbf{v}_{2}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
2 & 1 & -1 \\
1 & -1 & 2
\end{array}\right|=(1,-5,-3) .
$$

Since these vectors are not multiples, the lines are not parallel. Points on these lines are $R(1,-2,3)$ and $S(2,-7,0)$. The distance between the lines is $d=|\mathbf{R S} \cdot \widehat{\mathbf{P Q}}|$, where $\mathbf{P Q}$ is a vector normal to both lines, one such being

$$
\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
2 & 1 & -4 \\
1 & -5 & -3
\end{array}\right|=(-23,2,-11)
$$

Thus,

$$
d=\left|(1,-5,-3) \cdot \frac{(-23,2,-11)}{\sqrt{654}}\right|=0 .
$$

The lines therefore intersect.

6 5. Find all unit tangent vectors to the curve

$$
x+y^{2}=1, \quad z+y^{3}+2 x=2
$$

at the point $(0,1,1)$.

If we set $y=t$, then $x=1-t^{2}$, and $z=2-t^{3}-2\left(1-t^{2}\right)=2 t^{2}-t^{3}$. A tangent vector to the curve is $\mathbf{T}=\left(-2 t, 1,4 t-3 t^{2}\right)$. At $\left.0,1,1\right), t=1$, so that

$$
\mathbf{T}(1)=(-2,1,1) .
$$

Unit tangent vectors are

$$
\pm \hat{\mathbf{T}}(1)=\frac{ \pm(-2,1,1)}{\sqrt{6}}
$$

