8 1. (a) Find all unit tangent vectors to the curve

$$x = 3t^2$$
, $y = 2t^3$, $z = 4\sin(\pi t^2)$

at the point (0,0,0).

- (b) Set up, but do **NOT** evaluate, a definite integral for the length of the curve between the points (0,0,0) and (3,-2,0).
- (a) Tangent vectors to the curve are

$$\mathbf{T}(t) = \frac{dx}{dt}\hat{\mathbf{i}} + \frac{dy}{dt}\hat{\mathbf{j}} + \frac{dz}{dt}\hat{\mathbf{k}}$$
$$= 6t\hat{\mathbf{i}} + 6t^{2}\hat{\mathbf{j}} + 8\pi t\cos{(\pi t^{2})}\hat{\mathbf{k}}$$
$$= t[6\hat{\mathbf{i}} + 6t\hat{\mathbf{j}} + 8\pi\cos{(\pi t^{2})}\hat{\mathbf{k}}].$$

The multiplicative t can be removed without changing the direction of the vector. In other words, we can take tangent vectors as

$$\mathbf{T}_1(t) = 6\hat{\mathbf{i}} + 6t\hat{\mathbf{j}} + 8\pi\cos\left(\pi t^2\right)\hat{\mathbf{k}}.$$

Since t = 0 gives the point (0, 0, 0), a tangent vector at (0, 0, 0) is

$$\mathbf{T}_1(0) = 6\hat{\mathbf{i}} + 8\pi\hat{\mathbf{k}}.$$

The two unit tangent vectors to the curve at (0,0,0) are

$$\pm \frac{1}{\sqrt{36+64\pi^2}} (6\hat{\mathbf{i}} + 8\pi \hat{\mathbf{k}}).$$

(b) Since t = -1 gives the point (3, -2, 0), the length of the curve is

$$\int_{-1}^{0} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt = \int_{-1}^{0} \sqrt{(6t)^2 + (6t^2)^2 + [8\pi t \cos(\pi t^2)]^2} dt.$$

11 2. Find parametric equations for the projection of the curve

$$y^2 + 4z^2 = 16, \qquad x + y = 3$$

in the xz-plane directed so that x increases when z is positive.

The projection of the curve in the xz-plane has equation

$$(3-x)^2 + 4z^2 = 16$$
 or $(x-3)^2 + 4z^2 = 16$,

an ellipse. Parametric equations for the ellipse are

 $x = 3 + 4\cos t, \quad z = 2\sin t, \quad 0 \le t \le 2\pi.$

Since these equations trace the ellipse in the wrong direction, we replace t by -t,

 $x = 3 + 4\cos t$, $y = -2\sin t$, $0 \le -t \le 2\pi \implies 0 \ge t \ge -2\pi - 2\pi \le t \le 0$. We can replace these values of t with $0 \le t \le 2\pi$.

6 3. Evaluate the following limit, or show that it does not exist

$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{y^2 + 2x^6}$$

If we approach (0,0) along the cubic curves $y = ax^3$,

$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{y^2 + 2x^6} = \lim_{x\to0} \frac{x^3(ax^3)}{(ax^3)^2 + 2x^6} = \lim_{x\to0} \frac{a}{a^2 + 2} = \frac{a}{a^2 + 2}.$$

Since this limit depends on a, the value of the original limit depends on the mode of approach to (0,0). The original limit does not therefore exist.

15 4. If f(v) is a differentiable function, show that the function $u(x, y) = f(5x^2 + 6y^2) + 2x + 3y$ satisfies the equation

$$6y\frac{\partial u}{\partial x} - 5x\frac{\partial u}{\partial y} = 12y - 15x.$$

If we set $v = 5x^2 + 6y^2$, then

$$u = f(v) + 2x + 3y$$
, where $v = 5x^2 + 6y^2$.

From the schematic,

we find

$$\begin{split} \frac{\partial u}{\partial x}\Big)_y &= \frac{\partial u}{\partial v}\frac{\partial v}{\partial x} + \frac{\partial u}{\partial x}\Big)_{v,y} \\ &= f'(v)(10x) + 2, \\ \frac{\partial u}{\partial y}\Big)_x &= \frac{\partial u}{\partial v}\frac{\partial v}{\partial y} + \frac{\partial u}{\partial y}\Big)_{v,x} \\ &= f'(v)(12y) + 3. \end{split}$$

Thus,

$$6y\frac{\partial u}{\partial x} - 5x\frac{\partial u}{\partial y} = 6y[f'(v)(10x) + 2] - 5x[f'(v)(12y) + 3] = 12y - 15x.$$