## Solutions to MATH 2130 Test 1 May 25, 2021

8

1. (a) Find all unit tangent vectors to the curve

$$
x=3 t^{2}, \quad y=2 t^{3}, \quad z=4 \sin \left(\pi t^{2}\right)
$$

at the point $(0,0,0)$.
(b) Set up, but do NOT evaluate, a definite integral for the length of the curve between the points $(0,0,0)$ and $(3,-2,0)$.
(a) Tangent vectors to the curve are

$$
\begin{aligned}
\mathbf{T}(t) & =\frac{d x}{d t} \hat{\mathbf{i}}+\frac{d y}{d t} \hat{\mathbf{j}}+\frac{d z}{d t} \hat{\mathbf{k}} \\
& =6 t \hat{\mathbf{i}}+6 t^{2} \hat{\mathbf{j}}+8 \pi t \cos \left(\pi t^{2}\right) \hat{\mathbf{k}} \\
& =t\left[6 \hat{\mathbf{i}}+6 t \hat{\mathbf{j}}+8 \pi \cos \left(\pi t^{2}\right) \hat{\mathbf{k}}\right] .
\end{aligned}
$$

The multiplicative $t$ can be removed without changing the direction of the vector. In other words, we can take tangent vectors as

$$
\mathbf{T}_{1}(t)=6 \hat{\mathbf{i}}+6 t \hat{\mathbf{j}}+8 \pi \cos \left(\pi t^{2}\right) \hat{\mathbf{k}} .
$$

Since $t=0$ gives the point $(0,0,0)$, a tangent vector at $(0,0,0)$ is

$$
\mathbf{T}_{1}(0)=6 \hat{\mathbf{i}}+8 \pi \hat{\mathbf{k}} .
$$

The two unit tangent vectors to the curve at $(0,0,0)$ are

$$
\pm \frac{1}{\sqrt{36+64 \pi^{2}}}(6 \hat{\mathbf{i}}+8 \pi \hat{\mathbf{k}}) .
$$

(b) Since $t=-1$ gives the point $(3,-2,0)$, the length of the curve is

$$
\int_{-1}^{0} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t=\int_{-1}^{0} \sqrt{(6 t)^{2}+\left(6 t^{2}\right)^{2}+\left[8 \pi t \cos \left(\pi t^{2}\right)\right]^{2}} d t .
$$

2. Find parametric equations for the projection of the curve

$$
y^{2}+4 z^{2}=16, \quad x+y=3
$$

in the $x z$-plane directed so that $x$ increases when $z$ is positive.

The projection of the curve in the $x z$-plane has equation

$$
(3-x)^{2}+4 z^{2}=16 \quad \text { or } \quad(x-3)^{2}+4 z^{2}=16
$$

an ellipse. Parametric equations for the ellipse are

$$
x=3+4 \cos t, \quad z=2 \sin t, \quad 0 \leq t \leq 2 \pi .
$$

Since these equations trace the ellipse in the wrong direction, we replace $t$ by $-t$,

$$
x=3+4 \cos t, \quad y=-2 \sin t, \quad 0 \leq-t \leq 2 \pi \quad \Longrightarrow \quad 0 \geq t \geq-2 \pi \quad-2 \pi \leq t \leq 0 .
$$

We can replace these values of $t$ with $0 \leq t \leq 2 \pi$.

6 3. Evaluate the following limit, or show that it does not exist

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{y^{2}+2 x^{6}}
$$

If we approach $(0,0)$ along the cubic curves $y=a x^{3}$,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{y^{2}+2 x^{6}}=\lim _{x \rightarrow 0} \frac{x^{3}\left(a x^{3}\right)}{\left(a x^{3}\right)^{2}+2 x^{6}}=\lim _{x \rightarrow 0} \frac{a}{a^{2}+2}=\frac{a}{a^{2}+2} .
$$

Since this limit depends on $a$, the value of the original limit depends on the mode of approach to $(0,0)$. The original limit does not therefore exist.

15 4. If $f(v)$ is a differentiable function, show that the function $u(x, y)=f\left(5 x^{2}+6 y^{2}\right)+2 x+3 y$ satisfies the equation

$$
6 y \frac{\partial u}{\partial x}-5 x \frac{\partial u}{\partial y}=12 y-15 x .
$$

If we set $v=5 x^{2}+6 y^{2}$, then

$$
u=f(v)+2 x+3 y, \quad \text { where } v=5 x^{2}+6 y^{2}
$$

From the schematic,

we find

$$
\begin{aligned}
\left.\frac{\partial u}{\partial x}\right)_{y} & \left.=\frac{\partial u}{\partial v} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial x}\right)_{v, y} \\
& =f^{\prime}(v)(10 x)+2 \\
\left.\frac{\partial u}{\partial y}\right)_{x} & \left.=\frac{\partial u}{\partial v} \frac{\partial v}{\partial y}+\frac{\partial u}{\partial y}\right)_{v, x} \\
& =f^{\prime}(v)(12 y)+3
\end{aligned}
$$

Thus,

$$
6 y \frac{\partial u}{\partial x}-5 x \frac{\partial u}{\partial y}=6 y\left[f^{\prime}(v)(10 x)+2\right]-5 x\left[f^{\prime}(v)(12 y)+3\right]=12 y-15 x .
$$

