4 1. The gradient of a funnction $f(x, y, z)$ at the point $(1,-3,4)$ is

$$
\nabla f_{\mid(1,-3,4)}=(5,-2,6)
$$

(a) Considering rates of change of $f(x, y, z)$ along all vectors with tails at $(1,-3,4)$, what is the maximum rate of change of $f(x, y, z)$?
(b) Describe in words all directions in which the rate of change of $f(x, y, z)$ is equal to zero.
(c) Is it possible to find directions at $(1,-3,4)$ in which the rate of change of $f(x, y, z)$ is equal to 9? Explain.
(a) The maximum rate of change is the length of the gradient vector,

$$
\left|\nabla f_{\mid(1,-3,4)}\right|=\sqrt{25+4+36}=\sqrt{65} .
$$

(b) In any direction perpendicular to the gradient vector, the rate of change is equal to zero.
(c) Since the maximum rate of change is $\sqrt{65}$, there is no direction in which the rate of change is equal to 9 .

5 2. If $z=f(t)$, and $t=g(x, y)$, find the chain rule for $\left.\frac{\partial^{2} z}{\partial x^{2}}\right)_{y}$.

With the left schematic below,

$$
\frac{\partial z}{\partial x}=\frac{d z}{d t} \frac{\partial t}{\partial x}
$$

With the right schematic,

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial t}\left(\frac{\partial z}{\partial x}\right) \frac{\partial t}{\partial x}+\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\left(\frac{d^{2} z}{d t^{2}} \frac{\partial t}{\partial x}\right) \frac{\partial t}{\partial x}+\frac{d z}{d t} \frac{\partial^{2} t}{\partial x^{2}}
$$

7 3. Find equations for the tangent line to the curve

$$
x^{2} y^{3}+x z=1, \quad 2 x z+3 y z^{3}+x y=-23
$$

at the point $(1,-1,2)$.

$$
\begin{aligned}
\nabla\left(x^{2} y^{3}+x z-1\right)_{\mid(1,-1,2)} & =\left(2 x y^{3}+z, 3 x^{2} y^{2}, x\right)_{\mid(1,-1,2)}=(0,3,1), \\
\nabla\left(2 x z+3 y z^{3}+x y+23\right)_{\mid(1,-1,2)} & =\left(2 z+y, 3 z^{3}+x, 2 x+9 y z^{2}\right)_{\mid(1,-1,2)}=(3,25,-34) .
\end{aligned}
$$

A tangent vector to the curve at $(1,-1,2)$ is

$$
\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
0 & 3 & 1 \\
3 & 25 & -34
\end{array}\right|=(-127,3,-9) .
$$

Equations for the tangent line are

$$
x=1-127 t, \quad y=-1+3 t, \quad z=2-9 t .
$$

7 4. Find all critical points for the function

$$
f(x, y)=y e^{x}-e^{y}
$$

and classify them as yielding relative maxima, relative minima, saddle points, or none of these.

For critical points, we solve

$$
0=f_{x}=y e^{x}, \quad 0=f_{y}=e^{x}-e^{y} \quad \Longrightarrow \quad x=0, \quad y=0 .
$$

The only critical point is $(0,0)$. Since

$$
f_{x x}=y e^{x}, \quad f_{x y}=e^{x}, \quad \text { and } \quad f_{y y}=-e^{y},
$$

we find that at $(0,0), A=0, B=1$, and $C=-1$. Since $B^{2}-A C=1>0,(0,0)$ gives a saddle point.

7 5. Find the maximum value for the function

$$
f(x, y)=y(1-x-y)
$$

on the region bounded by the lines

$$
x+y=1, \quad x=0, \quad y=0 .
$$

For critical points in the region, we solve

$$
0=f_{x}=-y, \quad 0=f_{y}=1-2 y-x \quad \Longrightarrow \quad x=1, \quad y=0 .
$$

We therefore calculate $f(1,0)=0$. On the boundary $x=0$,

$$
f(0, y)=y(1-y)=F(y), \quad 0 \leq y \leq 1 .
$$

For critical values, we set

$$
0=F^{\prime}(y)=1-2 y \quad \Longrightarrow \quad y=1 / 2
$$

We evaluate

$$
F(0)=0, \quad F(1 / 2)=1 / 4, \quad F(1)=0 .
$$

On the boundary $y=0, f(x, 0)=0$ for all $0 \leq x \leq 1$. On the boundary, $x+y=1, f(x, y)=0$ also. Thus, the maximum value is $1 / 4$.

