## MATH 2130 Test 2 Solutions

6

1. Find parametric equations for the normal line to the surface

$$
x^{3} y z+x e^{y z}+z=5
$$

at the point $(1,0,4)$.

A normal vector to the surface is

$$
\nabla\left(x^{3} y z+x e^{y z}+z-5\right)_{\mid(1,0,4)}=\left(3 x^{2} y z+e^{y z}, x^{3} z+x z e^{y z}, x^{3} y+x y e^{y z}+1\right)_{\mid(1,0,4)}=(1,8,1)
$$

Parametic equations for the normal line are therefore

$$
x=1+t, \quad y=8 t, \quad z=4+t .
$$

2. The following equations define $u$ and $v$ as functions of $x$ and $y$

$$
x^{4} u^{2} v+x y^{3}=1, \quad x^{3} \sin y+u v=2 .
$$

Find $\partial u / \partial y$ when $x=1$ and $y=0$.

If we set $F(x, y, u, v)=x^{4} u^{2} v+x y^{3}-1$, and $G(x, y, u, v)=x^{3} \sin y+u v-2$, then

$$
\frac{\partial u}{\partial y}=-\frac{\frac{\partial(F, G)}{\partial(y, v)}}{\frac{\partial(F, G)}{\partial(u, v)}}=-\frac{\left|\begin{array}{cc}
F_{y} & F_{v} \\
G_{y} & G_{v}
\end{array}\right|}{\left|\begin{array}{cc}
F_{u} & F_{v} \\
G_{u} & G_{v}
\end{array}\right|}=-\frac{\left|\begin{array}{cc}
3 x y^{2} & x^{4} u^{2} \\
x^{3} \cos y & u
\end{array}\right|}{\left|\begin{array}{cc}
2 x^{4} u v & x^{4} u^{2} \\
v & u
\end{array}\right|}
$$

When $x=1$ and $y=0$, the equations reduce to

$$
u^{2} v=1, \quad u v=2 \quad \text { and these imply that } \quad u=1 / 2, \quad v=4 .
$$

With these values,

$$
\frac{\partial u}{\partial y}=-\frac{\left|\begin{array}{ll}
0 & 1 / 4 \\
1 & 1 / 2
\end{array}\right|}{\left|\begin{array}{ll}
4 & 1 / 4 \\
4 & 1 / 2
\end{array}\right|}=\frac{1}{4}
$$

3. Find the rate of change of the function

$$
f(x, y, z)=\ln (2 x-y+3 z)
$$

with respect to distance along the curve

$$
x^{3} y^{2}+x y z=-1, \quad x z^{2}+y z=2
$$

in the direction of decreasing $z$ at the point $(1,-1,2)$.

The gradient of the function at $(1,-1,2)$ is

$$
\nabla(\ln (2 x-y+3 z))_{\mid(1,-1,2)}=\left(\frac{2}{2 x-y+3 z}, \frac{-1}{2 x-y+3 z}, \frac{3}{2 x-y+3 z}\right)_{\mid(1,-1,2)}=\left(\frac{2}{9},-\frac{1}{9}, \frac{3}{9}\right)
$$

A normal vector to the surface $x^{3} y^{2}+x y z=-1$ at $(1,-1,2)$ is

$$
\nabla\left(x^{3} y^{2}+x y z+1\right)_{\mid(1,-1,2)}=\left(3 x^{2} y^{2}+y z, 2 x^{3} y+x z, x y\right)_{\mid(1,-1,2)}=(1,0,-1)
$$

A normal vector to the surface $x z^{2}+y z=2$ at $(1,-1,2)$ is

$$
\nabla\left(x z^{2}+y z-2\right)_{\mid(1,-1,2)}=\left(z^{2}, z, 2 x z+y\right)_{\mid(1,-1,2)}=(4,2,3) .
$$

A vector along the tangent line to the curve at the point is

$$
\mathbf{T}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 0 & -1 \\
4 & 2 & 3
\end{array}\right|=(2,-7,2)
$$

The rate of change in the direction of decreasing $z$ is

$$
D_{-\hat{T}} f=\nabla f \cdot(-\hat{\mathbf{T}})=\left(\frac{2}{9},-\frac{1}{9}, \frac{3}{9}\right) \cdot \frac{(-2,7,-2)}{\sqrt{57}}=-\frac{17}{9 \sqrt{57}}
$$

6
4. Prove that $(1,2)$ is a critical point for the function

$$
f(x, y)=|x-1|+4(y-2)^{2} .
$$

Determine whether this critical point yields a relative maximum, a relative minimum, a saddle point, or none of these.

For critical points of the function, we first set

$$
0=f_{x}=\frac{x-1}{|x-1|}, \quad 0=f_{y}=8(y-2)
$$

There are no solutions to these equations. But, $f_{x}$ does not exist when $x=1$. Hence, critical points of the function are $(1, y)$ for any $y$. It follows that $(1,2)$ is a critical point.

Since $f(1,2)=0$ and $f(x, y)>0$ for all other values of $x$ and $y,(1,2)$ yields a relative minimum.

3 5. Prove that the function

$$
f(x, y, z)=x^{3} \cos \left(\frac{y+z}{x}\right)+x y z
$$

satisfies the equation

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}+z \frac{\partial f}{\partial z}=3 f(x, y, z) .
$$

Hint: Think before making any calculations.

Since

$$
f(t x, t y, t z)=(t x)^{3} \cos \left(\frac{t y+t z}{t x}\right)+(t x)(t y)(t z)=t^{3}\left[x^{3} \cos \left(\frac{y+z}{x}\right)+x y z\right]=t^{3} f(x, y, z)
$$

the function is homogeneous of degree 3. Because partial derivatives are continuous when $x \neq 0$, Euler's theorem gives the result.

