MATH 2130 Test 2 November 1, 202260 minutes

6 1. If $z=x^{2}+y^{2}-x y, x=3 t^{2} \sin t$, and $y=t^{3} \cos 2 t$, find $d z / d t$.

Using the schematic to the right,

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& =(2 x-y)\left(6 t \sin t+3 t^{2} \cos t\right)+(2 y-x)\left(3 t^{2} \cos 2 t-2 t^{3} \sin 2 t\right)
\end{aligned}
$$

2. The following equations define s and t as functions of x and y.

$$
x^{3} s^{2}+2 x t y+5 s y=5, \quad x t+x y s^{2}+y^{3}+t^{3}=9 .
$$

Find $\partial s / \partial y$ when $x=0$ and $y=1$.

When we let $F(x, y, s, t)=x^{3} s^{2}+2 x t y+5 s y-5$ and $G(x, y, s, t)=x t+x y s^{2}+y^{3}+t^{3}-9$,

$$
\frac{\partial s}{\partial y}=-\frac{\frac{\partial(F, G)}{\partial(y, t)}}{\frac{\partial(F, G)}{\partial(s, t)}}=-\frac{\left|\begin{array}{ll}
F_{y} & F_{t} \\
G_{y} & G_{t}
\end{array}\right|}{\left|\begin{array}{ll}
F_{s} & F_{t} \\
G_{s} & G_{t}
\end{array}\right|}=-\frac{\left|\begin{array}{cc}
2 x t+5 s & 2 x y \\
x s^{2}+3 y^{2} & x+3 t^{2}
\end{array}\right|}{\left|\begin{array}{cc}
2 x^{3} s+5 y & 2 x y \\
2 x y s & x+3 t^{2}
\end{array}\right|}
$$

When $x=0$ and $y=1$,

$$
5 s=5, \quad 1+t^{3}=9 \quad \text { and these imply that } \quad s=1, \quad t=2 .
$$

The partial derivative at these values of x, y, s, and t is

$$
\frac{\partial s}{\partial y}=-\frac{\left|\begin{array}{cc}
5 & 0 \\
3 & 12
\end{array}\right|}{\left|\begin{array}{cc}
5 & 0 \\
0 & 12
\end{array}\right|}=-1
$$

3. Find the rate(s) of change of the function

$$
f(x, y, z)=x^{2} y z^{3}+z \sin (x y)+z+x
$$

with respect to distance along the curve

$$
x^{2} y^{3} z+x y+5 z=-5, \quad 2 x^{2}+y^{2}+3 z=-1
$$

at the point $(1,0,-1)$.
$\nabla f_{\mid(1,0,-1)}=\left(2 x y z^{3}+y z \cos (x y)+1, x^{2} z^{3}+x z \cos (x y), 3 x^{2} y z^{2}+\sin (x y)+1\right)_{\mid(1,0,-1)}=(1,-2,1)$
Since

$$
\nabla\left(x^{2} y^{3} z+x y+5 z+5\right)_{\mid(1,0,-1)}=\left(2 x y^{3} z+y, 3 x^{2} y^{2} z+x, x^{2} y^{3}+5\right)_{\mid(1,0,-1)}=(0,1,5)
$$

and

$$
\nabla\left(2 x^{2}+y^{2}+3 z+1\right)_{\mid(1,0,-1)}=(4 x, 2 y, 3)_{\mid(1,0,01)}=(4,0,3),
$$

a tangent vector to the curve at $(1,0,-1)$ is

$$
\mathbf{T}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
0 & 1 & 5 \\
4 & 0 & 3
\end{array}\right|=(3,20,-4)
$$

The rate of change in this direction is

$$
D_{\mathbf{T}} f=\nabla f \cdot \hat{\mathbf{T}}=(1,-2,1) \cdot \frac{(3,20,-4)}{\sqrt{425}}=\frac{-41}{\sqrt{425}} .
$$

We could also proceed in the opposite direction in which case the rate of change is $41 / \sqrt{425}$.
4. (a) Find all critical points for the function

$$
f(x, y)=y^{3}+3 x^{2} y-6 x^{2}-6 y^{2}+2 .
$$

(b) Pick one of the critical points and classify it as giving a relative maximum, a relative minimum, a saddle point, or none of these.

For critical points we sove

$$
0=f_{x}=6 x y-12 x=6 x(y-2) . \quad 0=f_{y}=3 y^{2}+3 x^{2}-12 y
$$

The first implies that $x=0$ or $y=2$. When $x=0$, the second equation becomes $0=3 y^{2}-12 y=$ $3 y(y-4)$ so that $y=0$ or $y=4$. Thus, two critical points are $(0,0)$ and $(0,4)$. When $y=2$, the second equation gives $0=12+3 x^{2}-24$, from which $x= \pm 2$. Thus, two more critical points are $(\pm 2,2)$.

$$
f_{x x}=6 y-12, \quad f_{x y}=6 x, \quad f_{y y}=6 y-12 .
$$

At the critical point $(0,0), A=-12, B=0$, and $C=-12$. Hence, $B^{2}-A C=-144$, and with $A<0,(0,0)$ gives a relative maximum.

