Values

6

1. Determine whether the limit

$$
\lim _{(x, y) \rightarrow(0,1)} \frac{x^{2}+y^{2}-2 y+1}{3 x^{2}-4 y^{2}+8 y-4}
$$

exists. If the limit exists, find its value; if the limit does not exist, give reasons for its nonexistence.

If we approach $(0,1)$ along straight lines $y=m x+1$, then

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,1)} \frac{x^{2}+y^{2}-2 y+1}{3 x^{2}-4 y^{2}+8 y-4} & =\lim _{x \rightarrow 0} \frac{x^{2}+(y-1)^{2}}{3 x^{2}-4(y-1)^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}+m^{2} x^{2}}{3 x^{2}-4 m^{2} x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{1+m^{2}}{3-4 m^{2}}=\frac{1+m^{2}}{3-4 m^{2}}
\end{aligned}
$$

Because this depends on m, the function has different limits for different modes of approach. Therefore the given limit does not exist.
2. Are there any values of n for which the function $f(x, y)=(2 x+3 y)^{n}$ is harmonic in the $x y$-plane?

The function has continuous derivatives of all orders. In addition,

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=2 n(2 x+3 y)^{n-1}, & \frac{\partial^{2} f}{\partial x^{2}}=4 n(n-1)(2 x+3 y)^{n-2} \\
\frac{\partial f}{\partial y}=3 n(2 x+3 y)^{n-1}, & \frac{\partial^{2} f}{\partial y^{2}}=9 n(n-1)(2 x+3 y)^{n-2}
\end{array}
$$

The function satisfies Laplace's equation if

$$
0=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=13 n(n-1)(2 x+3 y)^{n-2}
$$

This is true only if $n=0$ or $n=1$.
3. The function $f(x, y, z)=x^{2} e^{-z}+y$ is defined at every point on the curve

$$
x^{2}+y^{2}=4, \quad z=x
$$

directed counterclockwise as viewed from the origin. Find the rate of change of the function with respect to distance along the curve at the point $(2,0,2)$.

Since the origin is at the centre of the circle, we can go either direction around the curve. Since parametric equations for the curve are

$$
x=2 \cos t, \quad y=2 \sin t, \quad z=2 \cos t
$$

a tangent vector to the curve at $(2,0,2)$ is

$$
\mathbf{T}(0)=(-2 \sin t, 2 \cos t,-2 \sin t)_{\mid t=0}=(0,2,0)
$$

A unit tangent vector is $\hat{\mathbf{T}}=\hat{\mathbf{j}}$. The gradient of the function at $(2,0,2)$ is

$$
\nabla f_{\mid(2,0,2)}=\left(2 x e^{-z}, 1,-x^{2} e^{-z}\right)_{\mid(2,0,2)}=\left(4 e^{-2}, 1,-4 e^{-2}\right) .
$$

Consequently,

$$
D_{\mathbf{T}} f=\left(4 e^{-2}, 1,-4 e^{-2}\right) \cdot \hat{\mathbf{j}}=1
$$

In the reverse direction, the rate of change is -1 .
4. The equations

$$
x^{2}-y^{2}=2 u v, \quad u^{2}+v^{2}=2 x y
$$

define x and y as functions of u and v. Find $\frac{\partial x}{\partial v}$, simplified as much as possible.

If we set $F(x, y, u, v)=x^{2}-y^{2}-2 u v$ and $G(x, y, u, v)=u^{2}+v^{2}-2 x y$, then

$$
\begin{aligned}
\frac{\partial x}{\partial v} & =-\frac{\frac{\partial(F, G)}{\partial(v, y)}}{\frac{\partial(F, G)}{\partial(x, y)}}=-\frac{\left|\begin{array}{ll}
F_{v} & F_{y} \\
G_{v} & G_{y}
\end{array}\right|}{\left|\begin{array}{cc}
F_{x} & F_{y} \\
G_{x} & G_{y}
\end{array}\right|}=-\frac{\left|\begin{array}{cc}
-2 u & -2 y \\
2 v & -2 x
\end{array}\right|}{\left|\begin{array}{cc}
2 x & -2 y \\
-2 y & -2 x
\end{array}\right|} \\
& =-\frac{4 u x+4 v y}{-4 x^{2}-4 y^{2}}=\frac{u x+v y}{x^{2}+y^{2}} .
\end{aligned}
$$

5. If $f(x)$ is a differentiable function, verify that the function $u(x, y)=y f\left(3 x^{2}-4 y\right)$ satisfies the equation

$$
\frac{2 y}{x} \frac{\partial u}{\partial x}+3 y \frac{\partial u}{\partial y}=3 u
$$

If we set $s=3 x^{2}-4 y$, then $u=y f(s)$, and

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=y f^{\prime}(s)(6 x) \\
& \frac{\partial u}{\partial y}=f(s)+y f^{\prime}(s)(-4)
\end{aligned}
$$

Consequently,

$$
\frac{2 y}{x} \frac{\partial u}{\partial x}+3 y \frac{\partial u}{\partial y}=\frac{2 y}{x}\left[6 x y f^{\prime}(s)\right]+3 y\left[f(s)-4 y f^{\prime}(s)\right]=3 y f(s)=3 u .
$$

