Values

8

1. (a) What is the value of the constant C in order that the point $(1,1,1)$ be on the curve

$$
x^{3} y^{3}+x y=2, \quad 3 x+2 y-C z=1 ?
$$

(b) Find a unit tangent vector to the curve at the point $(1,1,1)$.
(a) Since $(1,1,1)$ must lie on $3 x+2 y-C z=1$, it follows that $3(1)+2(1)-C(1)=1$, from which $C=4$.
(b) A vector perpendicular to $x^{3} y^{3}+x y=2$ at $(1,1,1)$ is

$$
\nabla\left(x^{3} y^{3}+x y-2\right)_{\mid(1,1,1)}=\left(3 x^{2} y^{3}+y, 3 x^{3} y^{2}+x, 0\right)_{\mid(1,1,1)}=(4,4,0) .
$$

A vector perpendicular to $3 x+2 y-4 z=1$ is $(3,2,-4)$. A vector tangent to the curve at $(1,1,1)$ is therefore

$$
\mathbf{T}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
4 & 4 & 0 \\
3 & 2 & -4
\end{array}\right|=(-16,16,-4)
$$

Since $(4,-4,1)$ is also tangent, a unit tangent vector is $\hat{\mathbf{T}}=\frac{(4,-4,1)}{\sqrt{33}}$.
2. Evaluate the double iterated integral

$$
\int_{-2}^{0} \int_{-4}^{2 x} x \sqrt{x^{2}+y^{2}} d y d x
$$

If we reverse the order of integration

$$
\begin{aligned}
\int_{-2}^{0} \int_{-4}^{2 x} x \sqrt{x^{2}+y^{2}} d y d x & =\int_{-4}^{0} \int_{y / 2}^{0} x \sqrt{x^{2}+y^{2}} d x d y \\
& =\int_{-4}^{0}\left\{\frac{1}{3}\left(x^{2}+y^{2}\right)^{3 / 2}\right\}_{y / 2}^{0} d y \\
& =\frac{1}{3} \int_{-4}^{0}\left[\left(y^{2}\right)^{3 / 2}-\left(\frac{y^{2}}{4}+y^{2}\right)^{3 / 2}\right] d y \\
& =\frac{1}{3} \int_{-4}^{0}\left[-y^{3}+\left(\frac{5}{4}\right)^{3 / 2} y^{3}\right] d y \\
& =\frac{1}{3}\left(\frac{5 \sqrt{5}}{8}-1\right)\left\{\frac{y^{4}}{4}\right\}_{-4}^{0} \\
& =\frac{8}{3}(8-5 \sqrt{5})
\end{aligned}
$$

3. Find the maximum value of the function

$$
f(x, y)=x y(2-x-y)
$$

on the region $\quad x+y \leq 1, \quad x \geq 0, \quad y \geq 0$.

For critical points inside R, we solve
$0=f_{x}=2 y-2 x y-y^{2}=y(2-2 x-y)$,
$0=f_{y}=2 x-x^{2}-2 x y=x(2-x-2 y)$.
Solutions are ($0,0,(2,0),(0,2)$, and $(2 / 3,2 / 3)$, only the first being in R.

$$
f(0,0)=0
$$

On C_{1} and on $C_{2}, f(x, y)=0$.
On $C_{3}, y=1-x$, and

$$
g(x)=f(x, 1-x)=x(1-x)[2-x-(1-x)]=x(1-x), \quad 0 \leq x \leq 1
$$

For critical points of $g(x)$, we solve

$$
\begin{gathered}
g^{\prime}(x)=0=1-2 x \quad \Longrightarrow x=\frac{1}{2} \\
g(0)=0, \quad g(1 / 2)=1 / 4, \quad g(1)=0 .
\end{gathered}
$$

The maximum value is $1 / 4$.

