MATH 2130 Tutorial 3

1. The three lines below define a triangle. Find its area.

$$
\begin{array}{lll}
x=-11+5 s, & x=1+2 u, & x=-2+3 t, \\
y=s, & y=1-u, & y=-1+2 t, \\
z=-2+2 s ; & z=-2-4 u ; & z=-8+6 t .
\end{array}
$$

2. The vertices of the triangle in question 1 are three vertices of a parallelogram. What are the possibilities for the fourth vertex?
3. Find the centroid of the triangle in question 1 . It is the point of intersection of the three medians of the triangle, or it is the point on one of the medians, two-thirds of the way from the vertex to the midpoint of the opposite side.
4. Find $\mathbf{v}^{\prime}(3)$ if $\mathbf{v}(t)=t^{2} \hat{\mathbf{i}}+\operatorname{Sin}^{-1}(t / 4) \hat{\mathbf{j}}+\ln (2 t+1) \hat{\mathbf{k}}$.
5. If $f(t)=t^{2}+1$ and $\mathbf{v}(t)=e^{t} \hat{\mathbf{i}}+\left[t /\left(t^{2}+1\right)^{3}\right] \hat{\mathbf{j}}-t \sqrt{t^{2}+1} \hat{\mathbf{k}}$, evaluate $\int f(t) \mathbf{v}(t) d t$.

In questions 6-8, find parametric equations for the curve.
6. $z=2 \sqrt{x^{2}+y^{2}}, x^{2}+y^{2}=3-z$ from $(1,0,2)$ to $(-1,0,2)$ so that y is always nonpositive
7. first octant part of $x^{2}+z^{2}=4, x+y=1$ directed so that z increases along the curve
8. $z=x^{2}+y^{2}, x^{2}+y^{2}-4 y=0$ directed clockwise as viewed from a point far up the z-axis

Answers:

1. $(1 / 2) \sqrt{629}$
2. $(6,2,0),(2,4,8),(-4,0,-4)$
3. $(4 / 3,2,4 / 3)$
4. $6 \hat{\mathbf{i}}+\frac{1}{\sqrt{7}} \hat{\mathbf{j}}+\frac{2}{7} \hat{\mathbf{k}}$
5. $\left(t^{2}-2 t+3\right) e^{t} \hat{\mathbf{i}}-\frac{1}{2\left(t^{2}+1\right)} \hat{\mathbf{j}}-\frac{1}{5}\left(t^{2}+1\right)^{5 / 2} \hat{\mathbf{k}}+\bar{C}$
6. $x=\cos t, y=-\sin t, z=2,0 \leq t \leq \pi$
7. $x=2 \cos t, y=1-2 \cos t, z=2 \sin t, \pi / 3 \leq t \leq \pi / 2$
8. $x=2 \cos t, y=2-2 \sin t, z=8(1-\sin t), 0 \leq t \leq 2 \pi$
