MATH 2130 Tutorial 4

1. Find all unit tangent vectors to the curve $x^{2}+z^{2}=4, x+y=1$ at the point $(\sqrt{2}, 1-\sqrt{2}, \sqrt{2})$.
2. Find the unit tangent vector to the curve $x=t^{2}, y=3 t^{3}, z=3 t^{2}$ at the origin.
3. Find the angle between the tangent vectors to the curves

$$
x^{2}+y=z+4, \quad x+2 y=5, \quad \text { and } \quad x+y^{2}=5, \quad 2 x+3 y+4 z=4
$$

at the point of intersection of the curves.
4. Find the length of the curve

$$
x=t+1, \quad y=2 t^{3 / 2}-3, \quad z=4 t-2
$$

between the points $(2,-1,2)$ and $(1,-3,-2)$.
5. Show that it is impossible for the length of a curve joining the points $(1,-2,3)$ and $(0,4,10)$ to be equal to 9 .
6. Set up, but do not evaluate a definite integral, to find the length of the curve

$$
x^{2}+y^{2}=z^{2}-4, \quad x+y=4
$$

joining the points $(4,0,2 \sqrt{5})$ and $(2,2,2 \sqrt{3})$. Simplify the integrand as much as possible.

Answers:

1. $\pm(-\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) / \sqrt{3}$
2. $(\hat{\mathbf{i}}+3 \hat{\mathbf{k}}) / \sqrt{10}$
3. $\operatorname{Cos}^{-1}\left(\frac{-21}{\sqrt{14} \sqrt{297}}\right)$
4. $2(26 \sqrt{26}-17 \sqrt{17}) / 27$
5. $2 \int_{2}^{4} \sqrt{\frac{t^{2}-4 t+7}{t^{2}-4 t+10}} d t$
