MATH 2130 Tutorial 7

1. The equations

$$x^2 + y + 3s^2 + s = 2t - 1, \quad y^2 - x^4 + 2st + 7 = 6s^2t^2,$$

define s and t as functions of x and y. Find $\partial s / \partial x$ when s = 0 and t = 1. Assume that x > 0.

2. The equations

$$x^{3}y^{2} + uv = x + y + 2, \quad xy - y(u^{2} + v^{2}) = 3u + 3,$$

define u and v as functions of x and y. Find $\partial u/\partial y$ when x = 1 and y = 0.

3. The equations

 $x = r \sin \phi \cos \theta$, $y = r \sin \phi \sin \theta$, $z = r \cos \phi$,

define r, ϕ , and θ as functions of x, y, and z. Find $\partial \phi / \partial y$.

4. The function $f(x, y, z) = x^2y + z^3$ is defined at every point on the curve

$$x(y+z) = 3, \quad y-z = 4$$

directed so that y increases along the curve. What is the rate of change of the function with respect to distance travelled along the curve at the point (1, 7/2 - 1/2)?

- 5. In what direction(s) is the rate of change of the function $f(x, y) = x^2y xy^2$ with respect to distance equal to (a) -1, (b) 4 at the point (1, 1)?
- 6. At the point (1, 2, -3), a vector **v** makes an angle of $\pi/3$ radians with the gradient of the function $f(x, y, z) = x^2yz 3xy^3$. Find the rate of change of f(x, y, z) in direction **v**.

Answers:

- **1.** 16
- **2.** -3
- 3. $r^{-1}\cos\phi \sin\theta$
- 4. $-35/(4\sqrt{22})$
- 5. (a) \mathbf{j} , $-\mathbf{i}$ (b) None
- 6. $\sqrt{2821}/2$