MATH 2130 Tutorial 7

1. The equations

$$
x^{2}+y+3 s^{2}+s=2 t-1, \quad y^{2}-x^{4}+2 s t+7=6 s^{2} t^{2}
$$

define s and t as functions of x and y. Find $\partial s / \partial x$ when $s=0$ and $t=1$. Assume that $x>0$.
2. The equations

$$
x^{3} y^{2}+u v=x+y+2, \quad x y-y\left(u^{2}+v^{2}\right)=3 u+3,
$$

define u and v as functions of x and y. Find $\partial u / \partial y$ when $x=1$ and $y=0$.
3. The equations

$$
x=r \sin \phi \cos \theta, \quad y=r \sin \phi \sin \theta, \quad z=r \cos \phi
$$

define r, ϕ, and θ as functions of x, y, and z. Find $\partial \phi / \partial y$.
4. The function $f(x, y, z)=x^{2} y+z^{3}$ is defined at every point on the curve

$$
x(y+z)=3, \quad y-z=4
$$

directed so that y increases along the curve. What is the rate of change of the function with respect to distance travelled along the curve at the point ($1,7 / 2-1 / 2$)?
5. In what direction(s) is the rate of change of the function $f(x, y)=x^{2} y-x y^{2}$ with respect to distance equal to (a) -1 , (b) 4 at the point $(1,1)$?
6. At the point $(1,2,-3)$, a vector \mathbf{v} makes an angle of $\pi / 3$ radians with the gradient of the function $f(x, y, z)=x^{2} y z-3 x y^{3}$. Find the rate of change of $f(x, y, z)$ in direction \mathbf{v}.

Answers:

1. 16
2. -3
3. $r^{-1} \cos \phi \sin \theta$
4. $-35 /(4 \sqrt{22})$
5. (a) $\hat{\mathbf{j}},-\hat{\mathbf{i}}$ (b) None
6. $\sqrt{2821} / 2$
