MATH 2130 Tutorial 8

1. Find the rate of change of the function $f(x, y, z)=\sin (x y)-z^{3}$ at the point $(2,0,3)$ in the direction of the upward normal to the surface $x z^{2}-x^{2} z=6$.
2. Find equations for the tangent line to the curve

$$
x y z+z^{3}=24, \quad x^{3} y^{2} z+y^{3}=4 x-2
$$

at the point $(1,-1,3)$.
3. Find the acute angle between the normal to the surface $x+z=3$ and the tangent line to the curve $x y^{3} z+z^{3}=6, x y+y z=-3$ at their point of intersection.
4. Find all critical points for the function $f(x, y)=x^{3} y^{3}-x^{2} y^{2}+6$.
5. Find all critical points for the function $f(x, y)=x^{3} y^{2}-x y+3 y$.

Answers:

1. $-216 / \sqrt{73}$
2. $x=1+81 t, y=-1+133 t, z=3-6 t$
3. $\operatorname{Cos}^{-1}\left(\frac{3 \sqrt{5}}{10}\right)$
4. Every point on x-axis, every point on y-axis, and every point on the curve $y=2 /(3 x)$.
5. $(3,0),(9,1 / 243)$
