MATH 2130 Tutorial 9

In questions 1-4, find and classify all critical points of the function as giving relative maxima, relative minima, saddle points, or none of these.

1. $f(x, y)=x^{3}+x y+y^{3}$
2. $f(x, y)=x^{3}-x y^{2}+3 x y$
3. $f(x, y)=x^{4}-3 x^{2} y^{2}+y^{4}$
4. $f(x, y)=y^{2}+|x-1|$
5. Find the maximum and minimum values of the function $f(x, y)=x^{2}-y^{2}$ on the region $x^{2}+y^{2} \leq 1$.
6. Find the maximum value of the function $f(x, y)=x y(3-x-2 y)$ on the triangle R bounded by the positive x - and y-axes and the line $x+y=1$.
7. Find the maximum value of the function $f(x, y)=x^{2}-y^{2}+2 x+9 y / 2$ considering only points inside and on the boundary of the region surrounded by the curves

$$
x=1-y^{2}, \quad x=0 .
$$

Answers:

1. $(0,0)$ gives a saddle point; $(-1 / 3,-1 / 3)$ gives a relative maximum
2. $(0,0)$ gives a saddle point; $(0,3)$ also gives a saddle point
3. $(0,0)$ gives a saddle point
4. $(1,0)$ gives a relative minimum. Points $(1, y), y \neq 0$ give none of these.
5. $1,-1$
6. $2 \sqrt{3} / 9$
7. $65 / 16$
