THE UNIVERSITY OF MANITOBA

DATE: June 18, 2011FINAL EXAMINATIONDEPARTMENT & COURSE NO: MATH2132TIME: 3 hoursEXAMINATION: Engineering Mathematical Analysis 2EXAMINER: D. Trim

10 1. Find the interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} (x-1)^n.$$

8 2. Find the Taylor series about x = 4 for the function

$$f(x) = \frac{1}{(x+1)^2}.$$

Use a method that guarantees that the series converges to f(x). Express your answer in sigma notation, simplified as much as possible. Determine the open interval of convergence for the series.

12 3. (a) Find the Maclaurin series for the function

$$f(x) = x^4 \ln(x+2).$$

Express your answer in sigma notation simplified as much as possible. Include its radius of convergence.

- (b) Use the series in part (a) to find $f^{(10)}(0)$.
- **12 4.** Find a general solution for the differential equation

$$y'''' + 4y'' + 4y = x - 3\sin 3x.$$

6 5. You are given that the roots of the auxiliary equation associated with the linear, differential equation

$$\phi(D)y = x^3 - x + 2\sin 5x + e^{3x}$$

are $m = 0, 0, \pm 5i, 3 \pm 4i, 6$. Write down the form of a particular solution of the differential equation as predicted by the method of undetermined coefficients. Do **NOT** find the coefficients, just the form of the particular solution.

5 6. Find an integrating factor for the differential equation

$$(x+1)\frac{dy}{dx} + xy = \cos 2x, \quad x > 0.$$

Simplify your result as much as possible. Do **NOT** solve the differential equation.

- 7 7. Two substances A and B react to form a third substance C in such a way that 2 grams of A react with 3 grams of B to produce 5 grams of C. The rate at which C is formed is proportional to the product of the amounts of A and B still present in the mixture. Set up an initial-value problem (differential equation plus initial condition) for the amount C(t) of C present in the mixture as a function of time t when the original amounts of A and B brought together at time t = 0 are 20 grams and 10 grams, respectively.
- 8 8. Find the Laplace transform for the function $e^{-3t} \sin 2t h(t-\pi)$.
- 4 9. Can the function $F(s) = \frac{s^2 e^s}{(s^2 + 1)(e^s + 1)}$ be the Laplace transform of a piecewise continuous function of exponential order? Explain.
- 8 10. Find the inverse Laplace transform for the function $F(s) = \frac{e^{-2s}(1-e^s)}{s^3+2s}$.
- 8 11. A mass of 1 kilogram is suspended from a spring with constant 50 newtons per metre. At time t = 0, it is at its equilibrium position and is given velocity 2 metres per second downward. During its subsequent motion, it is also subjected to air resistance that (in newtons) is equal to 3/2 times its velocity (in metres per second). Use Laplace transforms to find the position of the mass as a function of time.
- 12 12. Find an integral representation for the solution of the initial-value problem

$$y'' - 2y' - 3y = f(t),$$
 $y(0) = 1, y'(0) = 0,$

where f(t) is some unspecified function.

Answers

$$1. -1 < x \le 3 \quad 2. \sum_{n=0}^{\infty} \frac{(-1)^n (n+1)}{5^{n+2}} (x-4)^n, -1 < x < 9$$

$$3.(a) (\ln 2) x^4 + \sum_{n=5}^{\infty} \frac{(-1)^{n+1}}{2^{n-4} (n-4)} x^n, 2 \quad (b) \frac{-10!}{6(2^6)}$$

$$4. \ y(x) = (C_1 + C_2 x) \cos \sqrt{2}x + (C_3 + C_4 x) \sin \sqrt{2}x + \frac{x}{4} - \frac{3}{49} \sin 3x$$

$$5. \ y_p(x) = Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex \sin 5x + Fx \cos 5x + Ge^{3x} \quad 6. \ e^x / (x+1)$$

$$7. \ \frac{dC}{dt} = k \left(20 - \frac{2C}{5} \right) \left(10 - \frac{3C}{5} \right), C(0) = 0 \quad 8. \ e^{-\pi (s+3)} \left[\frac{2}{(s+3)^2 + 4} \right] \quad 9. \ \text{No}$$

$$10. \ \left[\frac{1}{2} - \frac{1}{2} \cos \sqrt{2} (t-2) \right] h(t-2) - \left[\frac{1}{2} - \frac{1}{2} \cos \sqrt{2} (t-1) \right] h(t-1)$$

$$11. \ x(t) = -\frac{8}{\sqrt{791}} e^{-3t/4} \sin \frac{\sqrt{791}t}{4} \text{ m}$$

$$12. \ y(t) = \int_0^t \left[\frac{1}{4} e^{3(t-u)} - \frac{1}{4} e^{-(t-u)} \right] f(u) \, du + \frac{1}{4} e^{3t} + \frac{3}{4} e^{-t}$$