THE UNIVERSITY OF MANITOBA

DATE: June 16, 2012
DEPARTMENT \& COURSE NO: MATH2132

FINAL EXAMINATION
TIME: 3 hours

EXAMINATION: Engineering Mathematical Analysis 2 EXAMINER: D. Trim
PAGE NO: 1 of 12

INSTRUCTIONS:

1. No aids permitted.
2. Attempt all questions.
3. If insufficient space is provided for a solution to a problem, continue your work on the back of the previous page.
4. Check that your examination booklet contains pages numbered from 1 to 12 .
5. Fill in the information requested below.

Student Name (Print): \qquad
Student Signature:
Student Number:
Seat Number:

Question	Maximum Mark	Assigned Mark	Question	Maximum Mark	Assigned Mark
1	10		7	7	
2	14		8	9	
3	6		9	9	
4	15		10	8	
5	6		11	10	
6	6				
Total	57		Total	43	

Examination Total

THE UNIVERSITY OF MANITOBA

DATE: June 16, 2012
DEPARTMENT \& COURSE NO: MATH2132
FINAL EXAMINATION
TIME: 3 hours
EXAMINATION: Engineering Mathematical Analysis 2 EXAMINER: D. Trim
PAGE NO: 2 of 12

1. Find the interval of convergence for the power series

$$
\sum_{n=3}^{\infty} \frac{(-1)^{n} n}{4^{n+1}}(x-1)^{2 n}
$$

THE UNIVERSITY OF MANITOBA

DATE: June 16, 2012
DEPARTMENT \& COURSE NO: MATH2132
FINAL EXAMINATION
TIME: 3 hours
EXAMINATION: Engineering Mathematical Analysis 2 EXAMINER: D. Trim
PAGE NO: 3 of 12
2. Find the Maclaurin series for the function

$$
f(x)=\frac{x}{x^{2}-x-2} .
$$

Use a method that guarantees that the series converges to $f(x)$. Express your answer in sigma notation, simplified as much as possible. Determine the interval of convergence for the series.

THE UNIVERSITY OF MANITOBA

DATE: June 16, 2012
DEPARTMENT \& COURSE NO: MATH2132
FINAL EXAMINATION
TIME: 3 hours
EXAMINATION: Engineering Mathematical Analysis 2 EXAMINER: D. Trim
PAGE NO: 4 of 12

6 3. Find a maximum possible error when the function $e^{-3 x}$ is approximated by the first three terms in its Maclaurin series on the interval $0 \leq x \leq 0.2$.

THE UNIVERSITY OF MANITOBA

DATE: June 16, 2012
DEPARTMENT \& COURSE NO: MATH2132
FINAL EXAMINATION
TIME: 3 hours
EXAMINATION: Engineering Mathematical Analysis 2 EXAMINER: D. Trim
PAGE NO: 5 of 12

15 4. Find a general solution for the differential equation

$$
3 y^{\prime \prime \prime}+2 y^{\prime \prime}+2 y^{\prime}-y=x-e^{-2 x} .
$$

THE UNIVERSITY OF MANITOBA

DATE: June 16, 2012
DEPARTMENT \& COURSE NO: MATH2132
FINAL EXAMINATION
TIME: 3 hours
EXAMINATION: Engineering Mathematical Analysis 2 EXAMINER: D. Trim
PAGE NO: 6 of 12
5. You are given that the roots of the auxiliary equation associated with the linear, differential equation

$$
\phi(D) y=2 x e^{4 x}+x^{3}-2+3 e^{2 x} \cos 5 x
$$

are $m=0,2 \pm i, 2 \pm i, \pm 3,4$. Write down the form of a particular solution of the differential equation as predicted by the method of undetermined coefficients. Do NOT find the coefficients, just the form of the particular solution.
6. When a substance such as glucose is administered intravenously into the bloodstream, it is used up by the body at a rate proportional to the amount present at that time. If it is added at a variable rate $R(t)$, where t is time, and A_{0} is the amount in the bloodstream when the intravenous feeding begins, set up, but DO NOT SOLVE, an initial value problem for the amount of glucose in the bloodstream at any time. Is the differential equation separable?

THE UNIVERSITY OF MANITOBA

DATE: June 16, 2012
DEPARTMENT \& COURSE NO: MATH2132
FINAL EXAMINATION
TIME: 3 hours
EXAMINATION: Engineering Mathematical Analysis 2 EXAMINER: D. Trim
PAGE NO: 7 of 12

7 7. Find an implicit definition for the solution of the initial value problem

$$
y^{2} \frac{d y}{d x}=(x+1)\left(y^{3}+1\right), \quad y(0)=1 .
$$

THE UNIVERSITY OF MANITOBA

DATE: June 16, 2012
DEPARTMENT \& COURSE NO: MATH2132
FINAL EXAMINATION
TIME: 3 hours
EXAMINATION: Engineering Mathematical Analysis 2 EXAMINER: D. Trim
PAGE NO: 8 of 12

9 8. Find the Laplace transform for the function

$$
f(t)=\left\{\begin{array}{ll}
t, & 0 \leq t \leq 2 \\
4-t, & 2<t \leq 4
\end{array} \quad f(t+4)=f(t)\right.
$$

Simplify the transform as much as possible.

DATE: June 16, 2012
FINAL EXAMINATION
DEPARTMENT \& COURSE NO: MATH2132
TIME: 3 hours
EXAMINATION: Engineering Mathematical Analysis 2 EXAMINER: D. Trim
PAGE NO: 9 of 12

9 9. Find the inverse Laplace transform for the function

$$
F(s)=\frac{e^{-2 s}\left(3 s^{2}+2\right)}{s^{3}-s^{2}+2} .
$$

THE UNIVERSITY OF MANITOBA

DATE: June 16, 2012
DEPARTMENT \& COURSE NO: MATH2132

FINAL EXAMINATION
TIME: 3 hours

EXAMINATION: Engineering Mathematical Analysis 2 EXAMINER: D. Trim
PAGE NO: 10 of 12

8 10. A mass of 1 kilogram is suspended from a spring with constant 400 newtons per metre. At time $t=0$, it is at its equilibrium position and is given velocity 2 metres per second upward. During its subsequent motion, it is also subjected to a damping force that (in newtons) is equal to 40 times its velocity (in metres per second). Use Laplace transforms to find the position of the mass as a function of time.

THE UNIVERSITY OF MANITOBA

DATE: June 16, 2012
DEPARTMENT \& COURSE NO: MATH2132
FINAL EXAMINATION
TIME: 3 hours
EXAMINATION: Engineering Mathematical Analysis 2 EXAMINER: D. Trim
PAGE NO: 11 of 12

10 11. Solve the initial value problem

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 \delta(t-2), \quad y(0)=0, \quad y^{\prime}(0)=1 .
$$

THE UNIVERSITY OF MANITOBA

DATE: June 16, 2012
DEPARTMENT \& COURSE NO: MATH2132

FINAL EXAMINATION
TIME: 3 hours

EXAMINATION: Engineering Mathematical Analysis 2 EXAMINER: D. Trim
PAGE NO: 12 of 12

The following table of Laplace transforms may be used without proof.

$$
\begin{array}{rlc}
f(t) & & F(s)=\mathcal{L}\{f(t)\} \\
t^{n} \quad(n=0,1,2, \ldots) & \leftrightarrow & \frac{n!}{s^{n+1}} \\
e^{a t} & \leftrightarrow & \frac{1}{s-a} \\
\sin a t & \leftrightarrow & \frac{a}{s^{2}+a^{2}} \\
\cos a t & \leftrightarrow & \frac{s}{s^{2}+a^{2}} \\
h(t-a) & \leftrightarrow & \frac{e^{-a s}}{s} \\
\delta(t-a) & \leftrightarrow & e^{-a s} \\
e^{a t} f(t) & \leftrightarrow & F(s-a) \\
f(t) h(t-a) & & e^{-a s} \mathcal{L}\{f(t+a)\} \\
f(t-a) h(t-a) & & e^{-a s} F(s) \\
p-\operatorname{periodic} f(t) & & \frac{1}{1-e^{-p s} \int_{0}^{p} e^{-s t} f(t) d t} \\
\int_{0}^{t} f(u) g(t-u) d u & & F(s) G(s) \\
f^{\prime}(t) & & \leftrightarrow_{0} \\
f^{\prime \prime}(t) & & s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{array}
$$

en

