THE UNIVERSITY OF MANITOBA

DATE: June 16, 2012

FINAL EXAMINATION

DEPARTMENT & COURSE NO: MATH2132

TIME: 3 hours

EXAMINATION: Engineering Mathematical Analysis 2 EXAMINER: D. Trim

PAGE NO: 1 of 12

INSTRUCTIONS:

- 1. No aids permitted.
- **2.** Attempt all questions.
- 3. If insufficient space is provided for a solution to a problem, continue your work on the back of the previous page.
- 4. Check that your examination booklet contains pages numbered from 1 to 12.
- 5. Fill in the information requested below.

Student Name (Print):	
Student Signature:	
Student Number:	
Seat Number:	

Question	Maximum	Assigned	Question	Maximum	Assigned
	Mark	Mark		Mark	Mark
1	10		7	7	
2	14		8	9	
3	6		9	9	
4	15		10	8	
5	6		11	10	
6	6				
Total	57		Total	43	

Examination Total /100

10 1. Find the interval of convergence for the power series

$$\sum_{n=3}^{\infty} \frac{(-1)^n n}{4^{n+1}} (x-1)^{2n}.$$

14 2. Find the Maclaurin series for the function

$$f(x) = \frac{x}{x^2 - x - 2}.$$

Use a method that guarantees that the series converges to f(x). Express your answer in sigma notation, simplified as much as possible. Determine the interval of convergence for the series.

- 6 3. Find a maximum possible error when the function e^{-3x} is approximated by the first three terms in its Maclaurin series on the interval $0 \le x \le 0.2$.
- **15 4.** Find a general solution for the differential equation

$$3y''' + 2y'' + 2y' - y = x - e^{-2x}.$$

6 5. You are given that the roots of the auxiliary equation associated with the linear, differential equation

$$\phi(D)y = 2xe^{4x} + x^3 - 2 + 3e^{2x}\cos 5x$$

are $m = 0, 2 \pm i, 2 \pm i, \pm 3, 4$. Write down the form of a particular solution of the differential equation as predicted by the method of undetermined coefficients. Do **NOT** find the coefficients, just the form of the particular solution.

- 6 6. When a substance such as glucose is administered intravenously into the bloodstream, it is used up by the body at a rate proportional to the amount present at that time. If it is added at a variable rate R(t), where t is time, and A_0 is the amount in the bloodstream when the intravenous feeding begins, set up, but **DO NOT SOLVE**, an initial value problem for the amount of glucose in the bloodstream at any time. Is the differential equation separable?
- 7 7. Find an implicit definition for the solution of the initial value problem

$$y^2 \frac{dy}{dx} = (x+1)(y^3+1), \qquad y(0) = 1$$

9 8. Find the Laplace transform for the function

$$f(t) = \begin{cases} t, & 0 \le t \le 2\\ 4-t, & 2 < t \le 4 \end{cases} \qquad f(t+4) = f(t).$$

Simplify the transform as much as possible.

9 9. Find the inverse Laplace transform for the function

$$F(s) = \frac{e^{-2s}(3s^2 + 2)}{s^3 - s^2 + 2}$$

- 8 10. A mass of 1 kilogram is suspended from a spring with constant 400 newtons per metre. At time t = 0, it is at its equilibrium position and is given velocity 2 metres per second upward. During its subsequent motion, it is also subjected to a damping force that (in newtons) is equal to 40 times its velocity (in metres per second). Use Laplace transforms to find the position of the mass as a function of time.
- **10 11.** Solve the initial value problem

$$y'' - 3y' - 4y = 3\delta(t - 2),$$
 $y(0) = 0,$ $y'(0) = 1.$