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The pattern emerging is that

dn = 2n−1 − 2n−3 + 2n−4 − · · · + (−1)n.

If we multiply this by 2,

2dn = 2n − 2n−2 + 2n−3 − · · · + 2(−1)n,

and then add it to dn,

3dn = 2n + 2n−1 − 2n−2 + (−1)n.

Thus,

dn =
1
3
[
2n + 2n−1 − 2n−2 + (−1)n

]
=

1
3
[
5 · 2n−2 + (−1)n

]
.

Finally then, for n ≥ 2,

cn =
dn

2n−2
=

1
3 · 2n−2

[
5 · 2n−2 + (−1)n

]
=

5
3

+
(−1)n

3 · 2n−2
.

This formula also gives c1 = 1.

EXERCISES 10.9

1. Since lim
n→∞

n + 1
2n

=
1
2
, the series diverges by the nth term test.

2.
∞∑

n=1

2n

5n+1
=

1
5

∞∑

n=1

(
2
5

)n

, a geometric series with sum
1
5

(
2/5

1 − 2/5

)
=

2
15

.

3. Since
∞∑

n=1

cos
(nπ

2

)
= 0 − 1 + 0 + 1 + 0 − 1 + 0 + 1 + · · ·, terms do not approach zero, and the series

diverges by the nth term test.

4. Since lim
n→∞

(
n

n + 1

)n

=
1
e

(see expression 1.68), the series diverges by the nth term test.

5. This is a geometric series with common ratio 49/9, and therefore the series diverges.

6.
∞∑

n=1

7n+3

32n−2
=

73

3−2

∞∑

n=1

(
7
9

)n

is a geometric series with sum 73(3)2
(

7/9
1 − 7/9

)
=

21 609
2

.

7. Since lim
n→∞

√
n2 − 1
n2 + 1

= 1, the series diverges by the nth term test.

8.
∞∑

n=1

cosnπ

2n
=

∞∑

n=1

(−1)n

2n
=

∞∑

n=1

(
−

1
2

)n

is a geometric series with sum
−1/2

1 + 1/2
= −

1
3
.

9. Since terms of the series become arbitrarily large as n increases, the series diverges by the nth term test.

10. Since lim
n→∞

Tan−1n =
π

2
, the series diverges by the nth term test.

11. 0.666 666 . . . = 0.6 + 0.06 + 0.006 + · · · =
6
10

+
6

100
+

6
1000

+ · · · =
6/10

1 − 1/10
=

2
3

12. 0.131 313 131 . . . = 0.13 + 0.001 3 + 0.000 013 + · · · =
13
100

+
13

10 000
+

13
1 000 000

+ · · ·

=
13/100

1 − 1/100
=

13
99
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13. 1.347 346 346 346 . . . = 1.347 + 0.000 346 + 0.000 000 346 + · · · =
1347
1000

+
346
106

+
346
109

+ · · ·

=
1347
1000

+
346/106

1 − 1/103
=

1 345 999
999 000

14. 43.020 502 050 205 . . . = 43 + 0.020 5 + 0.000 002 05 + · · · = 43 +
205
104

+
205
108

+ · · ·

= 43 +
205/104

1 − 1/104
=

430 162
9999

15. If
∑

cn and
∑

dn converge, then
∑

(cn + dn) converges.
Proof: Let {Cn} and {Dn} be the sequences of partial sums for

∑
cn and

∑
dn with limits C and D.

The sequence of partial sums for
∑

(cn + dn), is {Cn + Dn}. According to part (ii) of Theorem 10.10,
this sequence has limit C + D. Consequently,

∑
(cn + dn) converges to C + D.

16. If
∑

cn converges and
∑

dn diverges, then
∑

(cn + dn) diverges.
Proof: Assume to the contrary that

∑
(cn + dn) converges. Let {Cn} and {Dn} be the sequences of

partial sums for
∑

cn and
∑

dn. It follows that limn→∞ Cn exists, call it C, but limn→∞ Dn does not
exist. {Cn +Dn} is the sequence of partial sums for

∑
(cn + dn), and by assumption, it has a limit, call

it E. But then according to part (ii) of Theorem 10.10, the sequence {(Cn + Dn) − Cn} = {Dn} must
have limit E − C, a contradiction. Consequently, our assumption that

∑
(cn + dn) converges must be

incorrect.
17. If

∑
cn and

∑
dn diverge, then

∑
(cn + dn) may converge or diverge.

Proof: We give an example of each situation. The series
∑

n and
∑

(−n) both diverge, but their sum∑
(n − n) =

∑
0 has sum 0. On the other hand, the sum of

∑
n and

∑
n is

∑
2n which diverges.

18. Since
∞∑

n=1

2n

4n
and

∞∑

n=1

3n

4n
are both geometric series with sums

∞∑

n=1

2n

4n
=

1/2
1 − 1/2

= 1 and
∞∑

n=1

3n

4n
=

3/4
1− 3/4

= 3,

then, by Exercise 15,
∞∑

n=1

2n + 3n

4n
= 1 + 3 = 4.

19. Since
∞∑

n=1

(3/2)n is a divergent geometric series, and
∞∑

n=1

(1/2)n is a convergent geometric series, it follows

from Exercise 16, that the given series diverges. (It also diverges by the nth term test.)

20. Since lim
n→∞

n2 + 22n

4n
= lim

n→∞

(
n2

4n
+ 1
)

= 1, the series diverges by the nth term test.

21. Since lim
n→∞

2n + 4n − 8n

23n
= lim

n→∞

(
1

22n
+

1
2n

− 1
)

= −1, the series diverges by the nth term test.

22. Since
1

n(n + 1)
=

1
n
− 1

n + 1
, the nth partial sum of the series is

Sn =
1

1 · 2
+

1
2 · 3

+ · · · + 1
n(n + 1)

=
(

1 − 1
2

)
+
(

1
2
− 1

3

)
+
(

1
3
− 1

4

)
+ · · · +

(
1
n
− 1

n + 1

)

= 1 − 1
n + 1

=
n

n + 1
.

Since lim
n→∞

Sn = 1, it follows that
∞∑

n=1

1
n(n + 1)

= 1.

23. The total distance travelled is 20 +
∞∑

n=1

40(0.99)n. The series is geometric with sum 20 +
40(0.99)
1 − 0.99

= 3980

m.
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24. The total time taken to come to rest is
√

40
9.81

+ t1 + t2 + t3 + · · · =

√
40

9.81
+

∞∑

n=1

tn =

√
40

9.81
+

∞∑

n=1

4√
0.981

(0.99)n/2

=

√
40

9.81
+

4
√

0.99/
√

0.981
1 −

√
0.99

= 804 s.

25. The total distance run by the dog is
2
3

+
∞∑

n=1

8
3n+1

=
2
3

+
8/9

1 − 1/3
= 2 km.

We could also have reasoned this without series. Since the dog runs twice as fast as the farmer, and the
farmer walks 1 km, the dog must run 2 km.

26. According to Exercise 10.1–61,

An =
√

3P 2

36

(
1 +

1
3

+
4
33

+
42

35
+ · · · + 4n−1

32n−1

)
(a finite geometric series after first term)

=
√

3P 2

36

{
1 +

(1/3)[1− (4/9)n]
1 − 4/9

}
(using 10.39a)

=
√

3P 2

180

[
8 − 3

(
4
9

)n]
.

Thus, lim
n→∞

An =
√

3P 2

180
(8) =

2
√

3P 2

45
.

27. The inequality is certainly true for x ≥ 0 and any n. To discuss the case when x < 0, we sum the
geometric series

1 + x + x2 + · · · + xn =
1 − xn+1

1 − x
.

When x < 0 and n is even, then 1− xn+1 > 0 and 1−x > 0. Hence, (1− xn+1)/(1−x) > 0. When n is
odd, and −1 ≤ x < 0, then 1 − xn+1 ≥ 0 and 1 − x > 0. Hence, (1 − xn+1)/(1 − x) > 0. Finally, when
n is odd, and x < −1, then 1 − xn+1 < 0 and 1 − x > 0. Hence, (1 − xn+1)/(1 − x) < 0. Consequently,
the inequality is valid for all x when n is even, and for x ≥ −1 when n is odd.

28. (a) If we subtract Sn = 1 + r + r2 + · · · + rn−1 from Tn = 1 + 2r + 3r2 + · · · + nrn−1, we obtain

Tn − Sn = r + 2r2 + 3r3 + · · · + (n − 1)rn−1 = r[1 + 2r + 3r2 + · · · + (n − 1)rn−2] = r(Tn − nrn−1).

When we solve this for Tn and substitute for Sn,

Tn =
Sn − nrn

1 − r
=

1 − rn

1 − r
− nrn

1 − r
=

1 − rn − nrn + nrn+1

(1 − r)2
=

1 − (n + 1)rn + nrn+1

(1 − r)2
.

If we now take limits as n → ∞, we obtain
∞∑

n=1

nrn−1 = lim
n→∞

1 − (n + 1)rn + nrn+1

(1 − r)2
=

1
(1 − r)2

, provided |r| < 1.

(b) If we set S(r) =
∞∑

n=1

nrn−1, and integrate with respect to r,

∫
S(r) dr + C =

∞∑

n=1

rn =
r

1 − r
.

Differentiation now gives S(r) =
(1 − r)(1) − r(−1)

(1 − r)2
=

1
(1 − r)2

.
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29.
1
2

+
2
22

+
3
23

+
4
24

+ · · · =
1
2

(
1 +

2
2

+
3
22

+
4
23

+ · · ·
)

=
1
2

[
1

(1 − 1/2)2

]
= 2

30.
2
5

+
4
25

+
6

125
+

8
625

+ · · · =
2
5

(
1 +

2
5

+
3
52

+
4
53

+ · · ·
)

=
2/5

(1 − 1/5)2
=

5
8

31.
2
3

+
3
27

+
4

243
+

5
2187

+ · · · = 3
(

1 +
2
9

+
3
81

+
4

729
+ · · ·

)
− 3 = 3

[
1

(1 − 1/9)2

]
− 3 =

51
64

32.
12
5

+
48
25

+
192
125

+
768
625

+ · · · =
12
5

(
1 +

4
5

+
16
25

+
64
125

+ · · ·
)

=
12/5

1 − 4/5
= 12

33. The probability that the first person wins on the first toss is 1/2. The probability that the first person
wins on the second toss is the product of the following three probabilities:

probability that first person throws a tail on the first toss = 1/2;
probability that second person throws a tail on first toss = 1/2;
probability that first person throws a head on second toss = 1/2.

The resultant probabilty is (1/2)(1/2)(1/2) = 1/23. The probability that the first person wins on the
third toss is the product of the following five probabilities:

probability that first person throws a tail on the first toss = 1/2;
probability that second person throws a tail on first toss = 1/2;
probability that first person throws a tail on second toss = 1/2.
probability that second person throws a tail on the second toss = 1/2;
probability that first person throws a head on third toss = 1/2;

The resultant probabilty is 1/25.
Continuation of this process leads to the following probability that the first person to toss wins

1
2

+
1
23

+
1
25

+
1
27

+ · · · =
1/2

1 − 1/4
=

2
3
.

34. The probability that the first person wins on the first toss is 1/6. The probability that the first person
wins on the second toss is the product of the following three probabilities:

probability that first person does not throw a six on the first toss = 5/6;
probability that second person does not throw a six on first toss = 5/6;
probability that first person throws a six on second toss = 1/6.

The resultant probabilty is (5/6)(5/6)(1/6) = 52/63. The probability that the first person wins on the
third toss is the product of the following five probabilities:

probability that first person does not throw a six on the first toss = 5/6;
probability that second person does not throw a six on first toss = 5/6;
probability that first person does not throw a six on second toss = 5/6.
probability that second person does not throw a six on the second toss = 5/6;
probability that first person throws a six on third toss = 1/6;

The resultant probabilty is 54/65.
Continuation of this process leads to the following probability that the first person to toss wins

1
6

+
52

63
+

54

65
+

56

67
+ · · · =

1/6
1 − 25/36

=
6
11

.

35. Since the radius of convergence of the series is R = lim
n→∞

∣∣∣∣
1/2n

1/2n+1

∣∣∣∣ = 2, the open interval of convergence

is −2 < x < 2. At x = 2, the power series reduces to
∑∞

n=0 1 which diverges by the nth term test. At
x = −2, it reduces to

∑∞
n=0 (−1)n which also diverges by the nth term test. The interval of convergence

for the series is therefore −2 < x < 2.

36. Since the radius of convergence of the series is R = lim
n→∞

∣∣∣∣
n23n

(n + 1)23n+1

∣∣∣∣ = 1/3, the open interval of

convergence is −1/3 < x < 1/3. At x = 1/3, the power series reduces to
∑∞

n=1 n2 which diverges by the
nth term test. At x = −1/3, it reduces to

∑∞
n=1 (−1)nn2 which also diverges by the nth term test. The

interval of convergence for the series is therefore −1/3 < x < 1/3.
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37. Since the radius of convergence of the series is R = lim
n→∞

∣∣∣∣∣∣∣∣∣

2n

(
n − 1
n + 1

)2

2n+1

(
n

n + 2

)2

∣∣∣∣∣∣∣∣∣
= 1/2, the open interval of

convergence is 7/2 < x < 9/2. At x = 9/2, the power series reduces to
∑∞

n=2 (n − 1)2/(n + 1)2 which
diverges by the nth term test. At x = 7/2, it reduces to

∑∞
n=2 (−1)n(n − 1)2/(n + 1)2 which also diverges

by the nth term test. The interval of convergence for the series is therefore 7/2 < x < 9/2.

38. If we set y = x3, the series becomes
∑∞

n=0 (−1)nx3n =
∑∞

n=0 (−1)nyn. Since the radius of convergence

of this series is Ry = lim
n→∞

∣∣∣∣
(−1)n

(−1)n+1

∣∣∣∣ = 1, the radius of convergence of the given series is Rx = 1. The

open interval of convergence is −1 < x < 1. At x = 1, the power series reduces to
∑∞

n=0 (−1)n which
diverges by the nth term test. At x = −1, it reduces to

∑∞
n=0 1 which also diverges by the nth term test.

The interval of convergence for the series is therefore −1 < x < 1.

39. While Achilles makes up the head start L, the tortoise moves a further distance L/c. While Achilles
makes up this distance, the tortoise moves a further distance (L/c)/c = L/c2. Continuation of this
process gives the following distance traveled by Achilles in catching the tortoise

L +
L

c
+

L

c2
+

L

c3
+ · · · =

L

1 − 1/c
=

cL

c − 1
.

40. (a) The minute hand moves 12 times as fast as the hour hand. While the minute hand moves through
the angle π/6 radians from 12 at 1:00 to 1 at 1:05, the hour hand
moves a further (π/6)/12 radians. While the minute hand moves
through this angle, the hour hand moves through a further angle
[(π/6)/12]/12 = (π/6)/122. Continuation of this process leads to
the following angle traveled by the minute hand in catching the
hour hand

12

2

111

10

π

6
+

π/6
12

+
π/6
122

+
π/6
123

+ · · · =
π/6

1 − 1/12
=

2π

11
.

This angle represents
2π

11

(
60
2π

)
=

60
11

minutes after 1:00.

(b) If we take time t = 0 at 1:00, the angle θ through which the minute hand moves in time t (in minutes)
is θ = 2πt/60. The angle φ that the hour hand makes with the vertical is φ = 2πt/720 + π/6. These

angles will be the same when
2πt

60
=

2πt

720
+

π

6
, the solution of which is 60/11 minutes.

41. (a) The minute hand moves 12 times as fast as the hour hand. While the minute hand moves through
the angle 5π/3 radians from 12 at 10:00 to 10 at 10:50, the hour hand
moves a further (5π/3)/12 radians. While the minute hand moves
through this angle, the hour hand moves through a further angle
[(5π/3)/12]/12 = (5π/3)/122. Continuation of this process leads
to the following angle traveled by the minute hand in catching the
hour hand

12

2

111

10

5π

3
+

5π/3
12

+
5π/3
122

+
5π/3
123

+ · · · =
5π/3

1 − 1/12
=

20π

11
.

This angle represents
20π

11

(
60
2π

)
=

600
11

minutes after 10:00.

(b) If we take time t = 0 at 10:00, the angle θ through which the minute hand moves in time t (in
minutes) is θ = 2πt/60. The angle φ that the hour hand makes with the vertical is φ = 2πt/720+ 5π/3.

These angles will be the same when
2πt

60
=

2πt

720
+

5π

3
, the solution of which is 600/11 minutes.
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42. Suppose the length of each block is L.
Taking the density of the blocks as unity,
the mass of the top n blocks is nL3.
The first moment of the nth block about
the y-axis is

L3xn = L3

(
L

2
+

L

2n

)
=

L4

2

(
1 +

1
n

)
.

The first moment of the (n − 1)th block
about the y-axis is

L3xn−1 = L3

[
L

2
+

L

2n
+

L

2(n − 1)

]

=
L4

2

(
1 +

1
n

+
1

n − 1

)
.

y

x

First Block

Second Block

( -1)th
Block

th Block

( +1)th Block

( 1, 1)

( 2, 2)

( , )

( , )

x y

x y

xn n

xn yn

n

n

y-1 -1

n

L n

L n

L /2

/(2 -2)

/(2 )

Continuing in this way, the moment of the first block about the y-axis is

L3x1 = L3

[
L

2
+

L

2n
+

L

2(n − 1)
+ · · · +

L

2

]
=

L4

2

(
1 +

1
n

+
1

n − 1
+ · · · +

1
2

+ 1
)

.

The x-coordinate of the centre of mass of the top n blocks is therefore

x =
1

nL3

[
L4

2

(
1 +

1
n

)
+

L4

2

(
1 +

1
n

+
1

n − 1

)
+ · · · +

L4

2

(
1 +

1
n

+
1

n − 1
+ · · · +

1
2

+ 1
)]

=
L

2n

[
n(1) + n

(
1
n

)
+ (n − 1)

(
1

n − 1

)
+ · · · + 2

(
1
2

)
+ 1(1)

]
=

L

2n
(2n) = L.

Thus, the centre of mass of the top n blocks is over the edge of the (n + 1)th block. They will not tip,
but they are in a state of precarious equilibrium.

The right edge of the top block sticks out the following distance over the right edge of the (n + 1)th

block

L

2
+

L

4
+

L

6
+ · · · +

L

2n
=

L

2

(
1 +

1
2

+
1
3

+ · · · +
1
n

)
.

This is L/2 times the nth partial sum of the harmonic series which we know becomes arbitrarily large
as n increases. Hence, the top n blocks can be made to protrude arbitrarily far over the (n + 1)th block.

43. Let {Sn} be the sequence of partial sums of the given series. It converges to the sum of the series, call it
S. If terms of the series are grouped together, then the sequence of partial sums of the new series, call
it {Tn}, is a subsequence of {Sn}. But every subseqeuence of a convergent series must converge to the
same limit as the sequence. Thus, {Tn} converges to S also, and the grouped series has sum S.

44. To verify this, we first write the Laplace transform as an infinite series of integrals

F (s) =
∫ ∞

0

e−stf(t) dt =
∞∑

n=0

∫ (n+1)p

np

e−stf(t) dt.

If we change variables of integration in the nth term with u = t − np, then

F (s) =
∞∑

n=0

∫ p

0

e−s(u+np)f(u + np) du =
∞∑

n=0

e−nps

∫ p

0

e−suf(u) du =
(∫ p

0

e−suf(u) du

)( ∞∑

n=0

e−nps

)
.

Since the series is geometric with common ratio e−ps,

F (s) =
∫ p

0

e−suf(u) du

[
1

1 − e−ps

]
=

1
1 − e−ps

∫ p

0

e−stf(t) dt.
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45. (a) When V is the voltage across the capacitor, and resistor R2 (they are in parallel), the currents
through these devices are iC = CdV/dt and iR2 = V/R2. The current through R1 must be the sum of
these, iR1 = V/R2 + CdV/dt. The voltage across R1 is therefore R1(V/R2 + CdV/dt), and it follows
that for Vin = V ,

V = V + R1

(
V

R2
+ C

dV

dt

)
=⇒ dV

dt
+ τV = αV ,

where τ = (R1 + R2)/(R1R2C) and α = 1/(R1C).
(b) If we multiply the differential equation by eτt, the left side becomes the derivative of a product,

eτt dV

dt
+ τeτtV = αV eτt =⇒ d

dt
(V eτt) = αV eτt =⇒ V eτt =

αV

τ
eτt + D =⇒ V =

αV

τ
+ De−τt.

Using the condition that lim
t→2(n−1)T+

V (t) = Vn−1, we obtain

Vn−1 =
αV

τ
+ De−2τ(n−1)T =⇒ D =

(
Vn−1 −

αV

τ

)
e2τ(n−1)T .

Hence, for 2(n − 1)T < t < (2n − 1)T ,

V (t) =
αV

τ
+
(

Vn−1 −
αV

τ

)
e2τ(n−1)T e−τt =

αV

τ
+
(

Vn−1 −
αV

τ

)
e−τ [t−2(n−1)T ].

At t = (2n − 1)T ,

V
(
(2n − 1)T

)
=

αV

τ
+
(

Vn−1 −
αV

τ

)
e−τ [(2n−1)T−2(n−1)T ] =

αV

τ
+
(

Vn−1 −
αV

τ

)
e−τT .

(c) When Vin = 0, the rectifier prevents the charge that has been stored in the capacitor from flowing back
through R1; it simply discharges itself through R2. Consequently, dV/dt + σV = 0 where σ = 1/(R2C).
(d) We separate the differential equation:

dV

V
= −σ dt =⇒ ln |V | = −σt + D =⇒ V (t) = Ee−σt.

If we now use the fact that lim
t→(2n−1)T+

V (t) =
αV

τ
+
(

Vn−1 −
αV

τ

)
e−τT , we obtain

αV

τ
+
(

Vn−1 −
αV

τ

)
e−τT = Ee−σ(2n−1)T =⇒ E =

αV

τ
eσ(2n−1)T +

(
Vn−1 −

αV

τ

)
e−[τ−σ(2n−1)]T .

Hence, for (2n − 1)T < t < 2nT , we have V (t) =
[
αV

τ
+
(

Vn−1 −
αV

τ

)
e−τT

]
e−σ[t−(2n−1)T ].

(e) When the function in (d) is evaluated at t = 2nT , its value is Vn; that is,

Vn =
[
αV

τ
+
(

Vn−1 −
αV

τ

)
e−τT

]
e−σT = pVn−1 + q,

where p = e−T (τ+σ) and q = (αV /τ)(1 − e−τT )e−σT . If we iterate this recursive definition,

V1 = pV0 + q, V2 = pV1 + q = p2V0 + q(p + 1), V3 = pV2 + q = p3V0 + q(p2 + p + 1).

The pattern emerging is Vn = pnV0 + q(1 + p + p2 + · · · + pn−1) = pnV0 +
q(1 − pn)

1 − p
.

Since V0 = 0, if the voltage across the capacitor is zero at time t = 0, we have

Vn =
q(1 − pn)

1 − p
=

αV

τ
(1 − e−τT )e−σT

[
1 − e−nT (τ+σ)

1 − e−T (τ+σ)

]
.
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46. (a) After time t, the amount of the first injection remaining is A0e
−kt; the amount of the second injection

remaining is A0e
−k(t−T ); the amount of the third injection remaining is A0e

−k(t−2T ); etc. At time t
between the nth and (n + 1)th injection, the total amount remaining is

An(t) = A0e
−kt + A0e

−k(t−T ) + · · · + A0e
−k[t−(n−1)T ]

= A0e
−kt
[
1 + ekT + e2kT + · · · + e(n−1)kT

]

= A0e
−kt

[
1 − (ekT )n

1 − ekT

]
(using 10.39a)

= A0e
−kt

[
1 − eknT

1 − ekT

]
(n − 1)T < t < nT.

(b)

A

tT TT TT2 3 4 5

A
A e kT

A e kT

A e kT e kT
0

0

0

0

(1+ -

(1+ - + - )

)

-

2

A t( )1

2

3

4

5

A t( )

A t( )

A t( )
A t( )

(c) lim
n→∞

An[(n − 1)T ] = lim
n→∞

A0e
−k(n−1)T

[
1 − eknT

1 − ekT

]

=
A0e

kT

1 − ekT
lim

n→∞
(e−knT − 1) =

−A0e
kT

1 − ekT
=

A0

1 − e−kT

EXERCISES 10.10

1. Since l = lim
n→∞

1
2n + 1

1
2n

= 1, and
∞∑

n=1

1
2n

=
1
2

∞∑

n=1

1
n

diverges, so also does the given series (by the limit

comparison test).

2. Since l = lim
n→∞

1
4n − 3

1
4n

= 1, and
∞∑

n=1

1
4n

=
1
4

∞∑

n=1

1
n

diverges, so also does the given series (by the limit

comparison test).

3. Since l = lim
n→∞

1
2n2 + 4

1
2n2

= 1, and
∞∑

n=1

1
2n2

=
1
2

∞∑

n=1

1
n2

converges, so also does the given series (by the

limit comparison test).

4. Since l = lim
n→∞

1
5n2 − 3n− 1

1
5n2

= 1, and
∞∑

n=1

1
5n2

=
1
5

∞∑

n=1

1
n2

converges, so also does the given series (by

the limit comparison test).


