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CHAPTER 5

EXERCISES 5.1

1. With the coordinate system of Figure 5.5, the initial-value problem describing the position x(t) of
the mass is

(1)
d2x

dt2
+ 16x = 0, x(0) = −1/10, x′(0) = 0.

The auxiliary equation is m2+16 = 0 with solutions m = ±4i. A general solution of the differential
equation is x(t) = C1 cos 4t+C2 sin 4t. To satisfy the initial conditions, we must have −1/10 = C1

and 0 = 4C2. Thus, x(t) = −(1/10) cos4t m.

2. With the coordinate system of Figure 5.3, the initial-value problem describing the position x(t) of
the mass is

1
10

d2x

dt2
+ 100x = 0, x(0) =

1
20

, x′(0) = 0.

The auxiliary equation is m2 + 1000 = 0 with solutions m = ±10
√

10i. A general solution of the
differential equation is x(t) = C1 cos 10

√
10t + C2 sin 10

√
10t. To satisfy the initial conditions, we

must have 1/20 = C1 and 0 = 10
√

10C2.
Thus, x(t) = (1/20) cos 10

√
10t m. A graph

of this function is shown to the right. The
amplitude of the oscillations is 5 cm, the
period is 2π/(10

√
10) =

√
10π/50 s, and

the frequency is 50/(
√

10π) = 5
√

10/π Hz.

x

t0.5 1

0.05

3. With the coordinate system of Figure 5.3, the initial-value problem describing the position x(t) of
the mass is

1
10

d2x

dt2
+ 100x = 0, x(0) = 0, x′(0) = −3.

The auxiliary equation is m2 + 1000 = 0 with solutions m = ±10
√

10i. A general solution of the
differential equation is x(t) = C1 cos 10

√
10t + C2 sin 10

√
10t. To satisfy the initial conditions, we

must have 0 = C1 and −3 = 10
√

10C2. Thus,
x(t) = (−3

√
10/100) sin 10

√
10t m. A graph

of this function is shown to the right. The
amplitude of the oscillations is 3

√
10/100 m,

the period is 2π/(10
√

10) =
√

10π/50 s, and
the frequency is 50/(

√
10π) = 5

√
10/π Hz.

x

t0.5 1

0.095

4. With the coordinate system of Figure 5.3, the initial-value problem describing the position x(t) of
the mass is

1
10

d2x

dt2
+ 100x = 0, x(0) =

1
20

, x′(0) = −3.

The auxiliary equation is m2 + 1000 = 0 with solutions m = ±10
√

10i. A general solution of the
differential equation is x(t) = C1 cos 10

√
10t + C2 sin 10

√
10t. To satisfy the initial conditions, we

must have 1/20 = C1 and −3 = 10
√

10C2. Thus,
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x(t) =
1
20

cos 10
√

10t − 3
√

10
100

sin 10
√

10t m.
A graph of this function is shown to the
right. The amplitude of the oscillations is√√√√

(
1
20

)2

+

(
−3

√
10

100

)2

=
√

115
100

m.

The period is 2π/(10
√

10) =
√

10π/50 s, and

x

t0.5 1

0.107

0.05

the frequency is 50/(
√

10π) = 5
√

10/π Hz.

5. With the coordinate system of Figure 5.3, the initial-value problem describing the position x(t) of
the mass is

1
10

d2x

dt2
+ 100x = 0, x(0) = − 1

20
, x′(0) = −3.

The auxiliary equation is m2 + 1000 = 0 with solutions m = ±10
√

10i. A general solution of the
differential equation is x(t) = C1 cos 10

√
10t + C2 sin 10

√
10t. To satisfy the initial conditions, we

must have −1/20 = C1 and −3 = 10
√

10C2. Thus,

x(t) = −
1
20

cos 10
√

10t −
3
√

10
100

sin 10
√

10t m.
A graph of this function is shown to the
right. The amplitude of the oscillations is√√√√

(
−1
20

)2

+

(
−3

√
10

100

)2

=
√

115
100

m.

The period is 2π/(10
√

10) =
√

10π/50 s, and

x

t0.5 1

0.107

-0.05

the frequency is 50/(
√

10π) = 5
√

10/π Hz.

6. (a) With the coordinate system of Figure 5.5, the initial-value problem describing the position x(t)
of the mass is

2
d2x

dt2
+ 1000x = 0, x(0) = − 3

100
, x′(0) = −2.

The auxiliary equation is 2m2 + 1000 = 0 with solutions m = ±10
√

5i. A general solution of the
differential equation is x(t) = C1 cos 10

√
5t + C2 sin 10

√
5t. To satisfy the initial conditions, we

must have −3/100 = C1 and −2 = 10
√

5C2. Thus,

x(t) = −
3

100
cos 10

√
5t −

√
5

25
sin 10

√
5t m.

A graph of this function is shown to the
right. The amplitude of the oscillations is√√√√

(
−3
100

)2

+

(
−
√

5
25

)2

=
√

89
100

m.

The period is 2π/(10
√

5) =
√

5π/25 s, and

x

t0.5 1

0.094

-0.03

the frequency is 25/(
√

5π) = 5
√

5/π Hz.
(b) The initial conditions affect the amplitude, but not the period or frequency.

7. With a mass of 8 kg, the initial-value problem for displacements is

8
d2x

dt2
+ 1000x = 0, x(0) = − 3

100
, x′(0) = −2.

The auxiliary equation is 8m2 + 1000 = 0 with solutions m = ±5
√

5i. A general solution of the
differential equation is x(t) = C1 cos 5

√
5t + C2 sin 5

√
5t. The period is 2π/(5

√
5) = 2

√
5π/25 s,

double that when the mass was 2 kg. The frequency will be half its previous value.
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8. With a spring constant of 4000 N/m, the initial-value problem for displacements is

2
d2x

dt2
+ 4000x = 0, x(0) = − 3

100
, x′(0) = −2.

The auxiliary equation is 2m2 + 4000 = 0 with solutions m = ±20
√

5i. A general solution of the
differential equation is x(t) = C1 cos 20

√
5t + C2 sin 20

√
5t. The period is 2π/(20

√
5) =

√
5π/50

s, half that when the spring constant was 1000 N/m. The frequency will be double its previous
value.

9. With the coordinate system of Figure 5.5, the differential equation describing the position x(t) of
the mass is

2
d2x

dt2
+ kx = 0.

The auxiliary equation is 2m2 + k = 0 with solutions m = ±
√

k/2i. A general solution of
the differential equation is x(t) = C1 cos

√
k/2t + C2 sin

√
k/2t. The period of the oscillations is

2π/
√

k/2 and therefore the frequency is
√

k/2/(2π) Hz. Since this must be 3, we set
√

k/2/(2π) =
3, from which k = 72π2 N/m.

10. With the coordinate system of Figure 5.5, the initial-value problem describing the position x(t) of
the mass is

M
d2x

dt2
+ kx = 0, x(0) = x0, x′(0) = v0.

The auxiliary equation is Mm2 + k = 0 with solutions m = ±
√

k/Mi. A general solution of the
differential equation is x(t) = C1 cos

√
k/Mt + C2 sin

√
k/Mt. To satisfy the initial conditions, we

must have x0 = x(0) = C1 and v0 = x′(0) =
√

k/MC2. Thus,

x(t) = x0 cos

√
k

M
t +

√
M

k
v0 sin

√
k

M
t.

If we set this equal to A sin (
√

k/Mt + φ), then

x0 cos

√
k

M
t +

√
M

k
v0 sin

√
k

M
t = A

(
sin

√
k

M
t cosφ + cos

√
k

M
t sin φ

)
.

This implies that

x0 = A sin φ,

√
M

k
v0 = A cosφ.

When these are squared and added,

A2 = x2
0 +

Mv2
0

k
=⇒ A =

√
x2

0 +
Mv2

0

k
.

It then follows that

sinφ =
x0

A
, cosφ =

√
M/kv0

A
.

11. The period of the oscillations in Exercise 10 is 2π/
√

k/M = 2π
√

M/k. This formula makes it clear
that when M is doubled, the period is increased by a factor of

√
2. It follows that the frequency

must be decreased by the same factor.
12. (a) When damping is ignored, the differential equation describing displacements of a mass is

M
d2x

dt2
+ kx = 0.
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Since velocity is a maximum when acceleration is zero, it follows that velocity is a maximum when
x = 0; that is, the mass passes through the equilibrium position.
(b) Maximum acceleration occurs when d3x/dt3 = 0, and the differential equation implies that this
occurs when dx/dt = 0; that is, when the velocity of the mass is zero. This occurs when the mass
is at its maximum distance from equilibrium.

13. If we use differential equation 5.5 to describe oscillations of the mass, there is no difference in the
analysis.

14. (a) With the coordinate system of Figure 5.5, the initial-value problem describing the position x(t)
of the mass is

1
10

d2x

dt2
+ 40x = 0, x(0) = − 1

50
, x′(0) = 10.

The auxiliary equation is m2 + 400 = 0 with solutions m = ±20i. A general solution of the
differential equation is x(t) = C1 cos 20t + C2 sin 20t. To satisfy the initial conditions, we must
have −1/50 = C1 and 10 = 20C2. Thus,

x(t) = − 1
50

cos 20t +
1
2

sin 20t m.

(b) To simplify the remaining parts of the exercise we express x(t) in the form

− 1
50

cos 20t +
1
2

sin 20t = A sin (20t + φ) = A(sin 20t cosφ + cos 20t sin φ).

These imply that

−
1
50

= A sin φ,
1
2

= A cosφ.

When these are squared and added,

A2 =
(
−1
50

)2

+
(

1
2

)2

=
626
2500

=⇒ A =
√

626
50

.

With this value for A,

sin φ = − 1√
626

, cosφ =
25√
626

.

One of many expressions for φ is φ = −Sin−1(1/
√

626). Thus,

x(t) =
√

626
50

sin (20t − θ), where θ = Sin−1

(
1√
626

)
.

The amplitude of the motion is
√

626/50 m, the period is π/10 s and the frequency is 10/π H.
(c) The velocity of the mass is zero when

0 = x′(t) =
20

√
626

50
cos (20t − θ) =⇒ 20t − θ =

(2n + 1)π
2

=⇒ t =
(2n + 1)π

40
+

θ

20
,

where n ≥ 0 is an integer.
(d) The mass passes through the equilibrium point when

0 = x(t) =⇒ 20t− θ = nπ =⇒ t =
θ

20
+

nπ

20
,

where n ≥ 0 is an integer.
(e) The mass has velocity 2 when

2 = x′(t) =
2
√

626
5

cos (20t − θ) =⇒ cos (20t− θ) =
5√
626

.
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This is true when

20t − θ = Cos−1

(
5√
626

)
+

(2n + 1)π
2

=⇒ t =
1
20

Cos−1

(
5√
626

)
+

θ

20
+

(2n + 1)π
40

,

where n ≥ 0 is an integer.
(f) The mass is 1 cm above its equilibrium position when

1
100

=
√

626
50

sin (20t − θ) =⇒ sin (20t − θ) =
1

2
√

626
.

This is true when

20t − θ =





Sin−1

(
1

2
√

626

)
+ 2nπ

π − Sin−1

(
1

2
√

626

)
+ 2nπ

=⇒ t =





1
20

Sin−1

(
1

2
√

626

)
+

nπ

20

− 1
20

Sin−1

(
1

2
√

626

)
+

(2n + 1)π
20

,

where n ≥ 0 is an integer.
(g) The velocity of the mass is 12 if, and when,

12 =
2
√

626
5

cos (20t − θ) =⇒ cos (20t − θ) =
30√
626

> 1.

Hence, the mass never attains this velocity.
(h) The mass is at maximum height when

√
626
50

=
√

626
50

sin (20t− θ) =⇒ sin (20t− θ) = 1 =⇒ 20t − θ =
(4n + 1)π

2

=⇒ t =
θ

20
+

(4n + 1)π
40

,

where n ≥ 0 is an integer. This happens for the second time when n = 1, in which case t =
θ/20 + 7π/40.

15. If s is the stretch in the spring at equilibrium, then ks = Mg so that s = Mg/k. This is the initial
displacement of the mass relative to the equilibrium position. The initial-value problem describing
the position x(t) of the mass relative to the equilibrium position is

M
d2x

dt2
+ kx = 0, x(0) =

Mg

k
, x′(0) = 0.

The auxiliary equation is Mm2 + k = 0 with solutions m = ±
√

k/Mi. A general solution of the
differential equation is x(t) = C1 cos (

√
k/Mt) + C2 sin (

√
k/Mt). To satisfy the initial conditions,

we must have Mg/k = C1 and 0 =
√

k/MC2. Thus,

x(t) =
Mg

k
cos

√
k

M
t m.

16. From time t = 0 when the container is attached to the spring until water has completely drained
out, the mass of the container is M − rt/m.
(a) With the coordinate system of Figure 5.4, Newton’s second law 3.4 gives

d

dt

[(
M − rt

m

)
dy

dt

]
= −

(
M − rt

m

)
g − β

dy

dt
− ky.

By expanding the first term, we can write the differential equation in the form
(

M − rt

m

)
d2y

dt2
+
(
β − r

m

) dy

dt
+ ky = −

(
M − rt

m

)
g.

The initial-value problem is this differential equation subject to y(0) = 0 = y′(0).
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(b) Consider now the coordinate system of Figure 5.5 where x = 0 corresponds to the position of
the container were it full and at equilibrium. The stretch s in the spring at this position is given
by the equation ks − Mg = 0. Newton’s second law gives

d

dt

[(
M − rt

m

)
dx

dt

]
= −

(
M − rt

m

)
g − β

dx

dt
+ k(s − x).

When we expand and use the equation Mg − ks = 0, we find
(

M − rt

m

)
d2x

dt2
+
(
β − r

m

) dx

dt
+ kx =

rgt

m
.

The initial-value problem is this differential equation subject to x(0) = Mg/k and x′(0) = 0.
Because the coefficient of the second derivative in both equations is not constant, we cannot solve
the differential equation with the techniques that we now have available.

17. (a) Since the cube floats half submerged,
its density is one-half that of water, namely
500 kg/m3. Suppose we let x denote the
distance of the midpoint of the cube below
the surface of the water. When the midpoint
is x m below the surface, the force on the
cube is the buoyant force due to Archimedes’
principle less the force of gravity,

−9810L2

(
L

2
+ x

)
+ 4905L3 = −9810L2x.

x

x

L

L

L

=0

/2

The differential equation describing oscillations of the cube is therefore

500L3d2x

dt2
= −9810L2x =⇒ x′′ +

981
50L

x = 0.

(b) The auxiliary equation m2 + 981/(50L) = 0 has solutions m = ±
√

981/(50L)i, and therefore

x(t) = C1 cos

√
981
50L

t + C2 sin

√
981
50L

t.

The frequency of the oscillations is

√
981/(50L)

2π
=

0.705√
L

Hz.

18. Let BC be the line on the cylinder that resides in the surface of
the water when the cylinder is at equilibrium. If x represents
the depth of BC below the surface when the cylinder is in motion,
then Newton’s second law for the acceleration of the cylinder is

M
d2x

dt2
= −9.81(1000)ρ(Ax),

where M is the mass of the cylinder, A is its cross-sectional
area, and ρ is its density. Since M = ρAL, where L is the
length of the cylinder,

x
L B C

x=0

ρAL
d2x

dt2
= −9810ρAx =⇒ L

d2x

dt2
+ 9810x = 0.

The auxiliary equation Lm2 + 9810 = 0 has roots m = ±
√

9810/Li, so that

x(t) = C1 cos
√

9810/Lt + C2 sin
√

9810/Lt. Since the period of the oscillations is 4 s, it fol-
lows that 2π

√
L/9810 = 4 =⇒ L = 39 240/π2. The mass of the cylinder is therefore ρAL =

ρ(π/100)(39 240/π2) = 124.9ρ kg.
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19. Because the sphere floats half submerged, its
density is one-half that of water, namely
500 kg/m3. The resultant vertical force
on the sphere when its centre is y m below
the surface is the buoyant force due to the
water displaced by the sphere less the force
of gravity on the sphere,

−9810V + 4905
(

4
3

)
πR3, z

x z R

y

2 2 2=+

x

( )-y

,y

where V is the volume of water displaced by the sphere when its centre is y m below the surface.
We can calculate V with the following double iterated integral,

V =
∫ R+y

0

∫ √
R2−(z−y)2

0

2πx dx dz = 2π

∫ R+y

0

{
x2

2

}√R2−(z−y)2

0

dz

= π

∫ R+y

0

[R2 − (z − y)2] dz = π

{
R2z − (z − y)3

3

}R+y

0

=
π

3
(2R3 + 3R2y − y3).

The resultant force on the sphere when its centre is at depth y is therefore

−9810π

3
(2R3 + 3R2y − y3) +

19 620
3

πR3 =
9810π

3
(y3 − 3R2y).

Newton’s second law now gives

4
3
πR3(500)

d2y

dt2
=

9810π

3
(y3 − 3R2y) =⇒ d2y

dt2
= −3(9.81)

2R3

(
R2y − y3

3

)
.

This is not a linear equation.
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EXERCISES 5.2

1. The initial-value problem describing the position x(t) of the mass is

(1)
d2x

dt2
+

1
10

dx

dt
+ 16x = 0, x(0) = − 1

10
, x′(0) = 0.

The auxiliary equation is 10m2 + m + 160 = 0 with solutions m = (−1 ± 9
√

79i)/20. A general
solution of the differential equation is x(t) = e−t/20[C1 cos (9

√
79t/20) + C2 sin (9

√
79t/20)]. To

satisfy the initial conditions, we must have −1/10 = C1 and 0 = −C1/20 + 9
√

79C2/20. These
give

x(t) = e−t/20

(
− 1

10
cos

9
√

79t
20

−
√

79
7110

sin
9
√

79t
20

)
m.

2. The initial-value problem describing the position x(t) of the mass is

(1)
d2x

dt2
+ 10

dx

dt
+ 16x = 0, x(0) = − 1

10
, x′(0) = 0.

The auxiliary equation is m2 +10m+16 = 0 with solutions m = −2, −8. A general solution of the
differential equation is x(t) = C1e

−2t + C2e
−8t. The initial conditions require −1/10 = C1 + C2

and 0 = −2C1 − 8C2. These give C1 = −2/15 and C2 = 1/30. Thus, x(t) = (e−8t − 4e−2t)/30 m.
3. The differential equation for motion with an unspecified damping factor is

(1)
d2x

dt2
+ β

dx

dt
+ 16x = 0.

Critically damped motion ocurs when roots of the auxiliary equation m2 + βm + 16 = 0 are real
and equal, and this occurs when the discriminant of the quadratic is equal to zero,

β2 − 4(1)(16) = 0 =⇒ β = 8.

4. The initial-value problem describing the position x(t) of the mass is

1
10

d2x

dt2
+ 40

dx

dt
+ 4000x = 0, x(0) =

1
50

, x′(0) = −4.

The auxiliary equation is m2 + 400m + 40 000 = 0 with solutions m = −200,−200. A general
solution of the differential equation is x(t) = (C1 + C2t)e−200t. To satisfy the initial conditions,
we must have

1
50

= C1, −4 = −200C1 + C2 =⇒ C2 = 0.

Thus, x(t) = (1/50)e−200t m. Since this function is never equal to zero, the mass does not pass
through the equilibrium position.

5. The initial-value problem describing the position x(t) of the mass is

1
10

d2x

dt2
+ 40

dx

dt
+ 4000x = 0, x(0) =

1
50

, x′(0) = −10.

The auxiliary equation is m2 + 400m + 40 000 = 0 with solutions m = −200,−200. A general
solution of the differential equation is x(t) = (C1 + C2t)e−200t. To satisfy the initial conditions,
we must have

1
50

= C1, −10 = −200C1 + C2 =⇒ C2 = −6.

Thus, x(t) =
(

1
50

− 6t

)
e−200t m. The mass passes through the equilibrium position if this func-

tion is ever equal to zero,
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(

1
50

− 6t

)
e−200t = 0 =⇒ t =

1
300

s.

6. (a) The initial-value problem describing the position x(t) of the mass is

(1)
d2x

dt2
+ 15

dx

dt
+ 50x = 0, x(0) =

1
20

, x′(0) = 3.

The auxiliary equation is m2 + 15m + 50 = 0 with solutions m = −5,−10. A general solution of
the differential equation is x(t) = C1e

−5t +C2e
−10t. To satisfy the initial conditions, we must have

1
20

= C1 + C2, 3 = −5C1 − 10C2 =⇒ C1 =
7
10

, C2 = −13
20

.

Thus, x(t) =
1
20
(
14e−5t − 13e−10t

)
m.

(b) The mass passes through the equilibrium position if this function is ever equal to zero,

1
20
(
14e−5t − 13e−10t

)
= 0 =⇒ e5t =

13
14

.

Since this cannot happen for t > 0, the mass does not pass through its equilibrium position.
(c) The mass is 1 cm above the equilibrium position when

1
20
(
14e−5t − 13e−10t

)
=

1
100

=⇒ e10t − 70e5t + 65 = 0.

Solutions of this quadratic equation in e5t are

e5t =
70±

√
4900− 4(65)

2
= 35± 2

√
290.

Since t must be positive, we take the positive root,
in which case t = (1/5) ln (35 + 2

√
290) s.

0.5 1

0.1

x

t

0.05

7. (a) The initial-value problem describing the position x(t) of the mass is

(1)
d2x

dt2
+ 15

dx

dt
+ 50x = 0, x(0) =

1
20

, x′(0) = −1.

The auxiliary equation is m2 + 15m + 50 = 0 with solutions m = −5,−10. A general solution of
the differential equation is x(t) = C1e

−5t +C2e
−10t. To satisfy the initial conditions, we must have

1
20

= C1 + C2, −1 = −5C1 − 10C2 =⇒ C1 = −
1
10

, C2 =
3
20

.

Thus, x(t) =
1
20
(
3e−10t − 2e−5t

)
m.

(b) The mass passes through the equilibrium position if this function is ever equal to zero,

1
20
(
3e−10t − 2e−5t

)
= 0 =⇒ e5t =

3
2

=⇒ t =
1
5

ln (3/2) s.

(c) The mass is 1 cm above the equilibrium position when

1
20
(
3e−10t − 2e−5t

)
=

1
100

=⇒ e10t + 10e5t − 15 = 0.
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Solutions of this quadratic equation in e5t are

e5t =
−10±

√
100 + 60
2

= −5± 2
√

10.

Since t must be positive, we take the positive root,
in which case t = (1/5) ln (2

√
10− 5) s.

0.5 1

x

t

0.05

0.01

8. (a) The initial-value problem describing the position x(t) of the mass is

(1)
d2x

dt2
+ 15

dx

dt
+ 50x = 0, x(0) =

1
20

, x′(0) = −3.

The auxiliary equation is m2 + 15m + 50 = 0 with solutions m = −5,−10. A general solution of
the differential equation is x(t) = C1e

−5t +C2e
−10t. To satisfy the initial conditions, we must have

1
20

= C1 + C2, −3 = −5C1 − 10C2 =⇒ C1 = −1
2
, C2 =

11
20

.

Thus, x(t) =
1
20
(
11e−10t − 10e−5t

)
m.

(b) The mass passes through the equilibrium position if this function is ever equal to zero,

1
20
(
11e−10t − 10e−5t

)
= 0 =⇒ e5t =

11
10

=⇒ t =
1
5

ln (11/10) s.

(c) The mass is 1 cm above the equilibrium position when

1
20
(
11e−10t − 10e−5t

)
=

1
100

=⇒ e10t + 50e5t − 55 = 0.

Solutions of this quadratic equation in e5t are

e5t =
−50±

√
2500 + 220
2

= −25± 2
√

170.

Since t must be positive, we take the positive root,
in which case t = (1/5) ln (2

√
170− 25) s.

0.5 1

x

t

0.05

0.01

-0.05

-0.1

The mass is 1 cm below the equilibrium position when

1
20
(
11e−10t − 10e−5t

)
= − 1

100
=⇒ e10t − 50e5t + 55 = 0.

Solutions of this quadratic equation in e5t are

e5t =
50±

√
2500− 220
2

= 25 ±
√

570 =⇒ t =
1
5

ln (25 ±
√

570) s.

9. (a) The initial-value problem describing the position x(t) of the mass is

2
d2x

dt2
+ 4

dx

dt
+ 200x = 0, x(0) =

1
10

, x′(0) = 5.

The auxiliary equation is 2m2 + 4m + 200 = 0 with solutions m = −1± 3
√

11i. A general solution
of the differential equation is x(t) = e−t[C1 cos (3

√
11t) + C2 sin 3

√
11t)]. To satisfy the initial

conditions, we must have

1
10

= C1, 5 = −C1 + 3
√

11C2 =⇒ C2 =
17

√
11

110
.
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Thus, x(t) =
e−t

110

[
11 cos (3

√
11t) + 17

√
11 sin (3

√
11t)

]
m.

(b) Maximum distance from equilibrium is attained when velocity is equal to zero for the first
time,

0 = x′(t) = − e−t

110

[
11 cos (3

√
11t) + 17

√
11 sin (3

√
11t)

]
+

e−t

110

[
−33

√
11 sin (3

√
11t) + 561 cos (3

√
11t)

]
.

This equation implies that

550 cos (3
√

11t) = 50
√

11 sin (3
√

11t) =⇒ tan (3
√

11t) =
√

11 =⇒ t =
1

3
√

11
Tan−1

√
11 +

nπ

3
√

11
,

where n ≥ 0 is an integer. We choose n = 0 for maximum distance, in which case

t =
1

3
√

11
Tan−1

√
11. When this is substituted into x(t), the result is x = 0.457 m or 45.7 cm.

(c) The mass passes through the equilibrium position when

0 = x(t) =
e−t

110

[
11 cos (3

√
11t) + 17

√
11 sin (3

√
11t)

]
=⇒ tan (3

√
11t) = −

√
11

17
.

Thus, t =
1

3
√

11
Tan−1

(
−
√

11
17

)
+

nπ

3
√

11
, where n ≥ 1 is an integer. When we choose n = 1 for

the first pass through the origin, t =
1

3
√

11
Tan−1

(
−
√

11
17

)
+

π

3
√

11
≈ 0.296 s.

10. (a) The initial-value problem describing the position x(t) of the mass is

(1)
d2x

dt2
+ 2

dx

dt
+ 40x = 0, x(0) = − 1

20
, x′(0) = 0.

The auxiliary equation is m2 + 2m + 40 = 0 with solutions m = −1±
√

39i. A general solution of
the differential equation is x(t) = e−t(C1 cos

√
39t + C2 sin

√
39t). To satisfy the initial conditions,

we must have

− 1
20

= C1, 0 = −C1 +
√

39C2 =⇒ C2 = −
√

39
780

.

Thus, x(t) = − e−t

780

[
39 cos

√
39t +

√
39 sin

√
39t
]

m. We now set

− 1
780

(39 cos
√

39t +
√

39 sin
√

39t) = A sin (
√

39t + φ) = A(sin
√

39t cosφ + cos
√

39t sin φ).

This implies that

A cosφ = −
√

39
780

, A sin φ = − 39
780

.

Squaring and adding these gives

A2 =
39

7802
+

392

7802
=

1
390

=⇒ A =
1√
390

.

Hence,

cosφ = −
√

39
√

390
780

, sin φ = −39
√

390
780

.

One solution of these equations is φ = −1.73. Thus, x(t) =
1√
390

sin (
√

39t − 1.73).

(b) The mass passes through the equilibrium position when
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0 = x(t) =
1√
390

sin (
√

39t − 1.73) =⇒
√

39t − 1.73 = nπ =⇒ t =
nπ + 1.73√

39
,

where n ≥ 0 is an integer. The distance between successive times is π/
√

39.
11. (a) The initial-value problem describing the position x(t) of the mass is

M
d2x

dt2
+ β

dx

dt
+ kx = 0, x(0) = x0, x′(0) = v0.

The auxiliary equation is Mm2 + βm + k = 0 with solutions m =
−β ±

√
β2 − 4kM

2M
. Since the

motion is critically damped, β2 − 4kM = 0, and the auxiliary has equal roots m = −β/(2M). A
general solution of the differential equation is x(t) = (C1 + C2t)e−βt/(2M). To satisfy the initial
conditions, we must have

x0 = C1, v0 = C2 −
β

2M
C1 =⇒ C2 = v0 +

βx0

2M
.

Thus, x(t) =
[
x0 +

(
v0 +

βx0

2M

)
t

]
e−βt/(2M) m. The mass passes through the equilibrium position

when

0 = x(t) =
[
x0 +

(
v0 +

βx0

2M

)
t

]
e−βt/(2M) =⇒ t = − x0

v0 + βx0/(2M)
.

When x0 and v0 are both positive, or both are negative, this value is negative, an unacceptable
value.
(b) The equation defining t in part (a) yields only one value; that is, there can be at most one
time at which the mass passes through equilibrium. There will be one when the equation yields a
positive value for t. This occurs when

− x0

v0 + βx0/(2M)
> 0.

When x0 > 0, this requires

v0 +
βx0

2M
< 0 =⇒

v0

x0
+

β

2M
< 0.

On the other hand when x0 < 0, we must have

v0 +
βx0

2M
> 0 =⇒ v0

x0
+

β

2M
< 0.

12. (a) The initial-value problem describing the position x(t) of the mass is

M
d2x

dt2
+ β

dx

dt
+ kx = 0, x(0) = x0, x′(0) = v0.

The auxiliary equation is Mm2 + βm + k = 0 with solutions m =
−β ±

√
β2 − 4kM

2M
. Since the

motion is overdamped, β2 − 4kM > 0, and the auxiliary has real roots. Suppose we denote them

by ω1 =
−β −

√
β2 − 4kM

2M
and ω2 =

−β +
√

β2 − 4kM

2M
. A general solution of the differential

equation is x(t) = C1e
ω1t + C2e

ω2t. To satisfy the initial conditions, we must have

x0 = C1 + C2, v0 = ω1C1 + ω2C2 =⇒ C1 =
ω2x0 − v0

ω2 − ω1
, C2 =

v0 − ω1x0

ω2 − ω1
.

Thus,

x(t) =
(

ω2x0 − v0

ω2 − ω1

)
eω1t +

(
v0 − ω1x0

ω2 − ω1

)
eω2t m.
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The mass passes through the equilibrium position when

0 = x(t) =
(

ω2x0 − v0

ω2 − ω1

)
eω1t +

(
v0 − ω1x0

ω2 − ω1

)
eω2t.

This implies that

e
√

β2−4kMt/M =
1 − ω2x0

v0

1 − ω1x0

v0

.

When x0 and v0 are both positive, or both are negative, the right side of this equation is between
0 and 1, an unacceptable value.
(b) The equation defining t in part (a) yields only one value; that is, there can be at most one
time at which the mass passes through equilibrium. There will be one when the equation yields a
positive value for t. This occurs when

1 − ω2x0

v0

1 − ω1x0

v0

> 1.

If 1 − ω1x0/v0 > 0, this requires

1 −
ω2x0

v0
> 1 −

ω1x0

v0
=⇒ ω2 < ω1,

a contradiction. Thus, we must have

1 − ω1x0

v0
< 0 =⇒ v0

x0
− ω1 > 0 =⇒ β +

√
β2 − 4kM

2M
+

v0

x0
< 0.

13. If x measures displacement of the platform from its equilibrium position, then the differential
equation for the combined motion is

(
W + w

g

)
d2x

dt2
+ β

dx

dt
+ kx = 0.

The auxiliary equation is
(

W + w

g

)
m2 + βm + k = 0 with solutions

m =
−β ±

√
β2 − 4k(W + w)/g

2(W + w)/g
.

Oscillations occur for large w, and for small values of w no oscillations occur. The largest value of
w for no oscillations occurs when

β2 − 4k(W + w)
g

= 0 =⇒ w =
β2g

4k
− W.

14. (a) The initial-value problem describing the position x(t) of the mass is

M
d2x

dt2
+ β

dx

dt
+ kx = 0, x(0) = x0, x′(0) = v0.

The auxiliary equation is Mm2 + βm + k = 0 with solutions m =
−β ±

√
β2 − 4kM

2M
. Since

the motion is underdamped, β2 − 4kM < 0, and the auxiliary has equal roots m = (−β ±√
4kM − β2i)/(2M). A general solution of the differential equation is
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x(t) = e−βt/(2M)

[
C1 cos

(√
4kM − β2

2M
t

)
+ C2 sin

(√
4kM − β2

2M
t

)]
.

The initial conditions determine values for C1 and C2, but we shall not need them. Any function
of this form can also be expressed in the form

x(t) = Ae−βt/(2M) sin

(√
4kM − β2

2M
t + φ

)
.

(b) The times at which the mass passes through equilibrium are defined by the equation

0 = x(t) = Ae−βt/(2M) sin

(√
4kM − β2

2M
t + φ

)
=⇒ sin

(√
4kM − β2

2M
t + φ

)
= 0.

Hence,
√

4kM − β2

2M
t + φ = nπ =⇒ t =

2M(nπ − φ)√
4kM − β2

,

where n ≥ 1 is an integer. The time interval between successive passes throught the origin is
2Mπ√

4kM − β2
.

(c) Times at which the velocity of the mass is equal to zero are given by

0 = A

[
− β

2M
e−βt/(2M) sin

(√
4kM − β2

2M
t + φ

)
+

√
4kM − β2

2M
e−βt/(2M) cos

(√
4kM − β2

2M
t + φ

)]
.

This simplifies to

−β sin

(√
4kM − β2

2M
t + φ

)
+
√

4kM − β2 cos

(√
4kM − β2

2M
t + φ

)
= 0,

from which

tan

(√
4kM − β2

2M
t + φ

)
=

√
4kM − β2

β
.

Thus, times at which the velocity is zero are

tn =
2M√

4kM − β2

[
Tan−1

(√
4kM − β2

β

)
+ nπ − φ

]
,

where n ≥ 1 is an integer. Depending on values for φ and the inverse tangent function, n might
start at a value other than 1. It makes no difference to the rest of our discussion. Suppose xn are
the corresponding values for x(t). Consider the ratio

xn

xn+2
=

e−βtn/(2M) sin
(√

4kM−β2

2M tn + φ

)

e−βtn+2/(2M) sin
(√

4kM−β2

2M tn+2 + φ

) = eβ(tn+2−tn)/(2M)

sin
(√

4kM−β2

2M tn + φ

)

sin
(√

4kM−β2

2M tn+2 + φ

) .

Since tn+2 − tn =
2M√

4kM − β2
(2π) =

4Mπ√
4kM − β2

,

eβ(tn+2−tn)/(2M) = e2βπ/
√

4kM−β2
.

Furthermore,
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sin

(√
4kM − β2

2M
tn+2 + φ

)
= sin

[
Tan−1

(√
4kM − β2

β

)
+ (n + 2)π

]

= sin

[
Tan−1

(√
4kM − β2

β

)
+ nπ

]

= sin

(√
4kM − β2

2M
tn + φ

)
.

Thus,
xn

xn+2
= e2βπ/

√
4kM−β2

.
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EXERCISES 5.3

1. The solution is the same to the time and position of the first stop of the mass. During the return
trip to the right, the initial-value problem defining the position of the mass is

d2x

dt2
+ 16x = −

g

10
, x(0.431082) = −0.191663, x′(0.431082) = 0.

A general solution of this differential equation is

x(t) = C3 cos 4t + C4 sin 4t − g

160
.

The initial conditions require

−0.191663 = C3 cos 4(0.431082) + C4 sin 4(0.431082)− g

160
,

0 = −4C3 sin 4(0.431082) + 4C4 cos 4(0.431082).

The solution is C3 = 0.0199344 and C4 = −0.128817, so that

x(t) = 0.0199344 cos4t − 0.128817 sin4t − g

160
.

The mass comes to rest for the second time when

0 = x′(t) = −4(0.0199344) sin4t − 4(0.128817) cos4t =⇒ tan 4t = − 0.128817
0.0199344

.

Thus, t = −(1/4)Tan−1(0.128817/0.0199344)+ nπ/4 = −0.354316 + nπ/4. Since t must be larger
than 0.431082, we choose n = 2 in which case t = 1.216480. At this time, the position of the mass
is

x(1.216480) = 0.0199344 cos4(1.216480)− 0.128817 sin4(1.216480)− g

160
= 0.069038 m.

2. (a) We should first check that the initial stretch in the spring is sufficient to overcome the force
of static friction on the mass so that motion does occur. Since the coefficient of static friction is
twice that of kinetic friction, it follows that the minimum force that will cause motion is 1 N. At a
stretch of 6 cm, the spring force on the mass is 18(6/100) > 1. Thus, motion will occur. Since the
x-component of the force of friction when the mass is moving to the left is 1/2 N, the initial-value
problem describing the position x(t) of the mass from the time it starts until it comes to a stop
for the first time is

1
2

d2x

dt2
+ 18x =

1
2

=⇒ x′′ + 36x = 1, x(0) = 0.06, x′(0) = 0.

(b) The auxiliary equation is m2 +36 = 0 with solutions m = ±6i, and therefore x(t) = C1 cos 6t+
C2 sin 6t + 1/36. To satisfy the initial conditions, we must have 3/50 = C1 + 1/36 and 0 = 6C2.
Thus, x(t) = (29/900) cos6t + 1/36. Since v(t) = −(29/150) sin6t, the mass comes to rest for the
first time when 6t = π, and at this time, its position is x = (29/900) cosπ + 1/36 = −1/25

3. (a) We should first check that the initial stretch in the spring is sufficient to overcome the force
of static friction on the mass so that motion does occur. Since the coefficient of static friction is
twice that of kinetic friction, it follows that the minimum force that will cause motion is 1 N. At a
stretch of 25 cm, the spring force on the mass is 18(1/4) > 1. Thus, motion will occur. Since the
x-component of the force of friction when the mass is moving to the left is 1/2 N, the initial-value
problem describing the position x(t) of the mass from the time it starts until to a stop for the first
time is

1
2

d2x

dt2
+ 18x =

1
2

=⇒ x′′ + 36x = 1, x(0) = 0.25 x′(0) = 0.

(b) The auxiliary equation is m2 +36 = 0 with solutions m = ±6i, and therefore x(t) = C1 cos 6t+
C2 sin 6t + 1/36. To satisfy the initial conditions, we must have 1/4 = C1 + 1/36 and 0 = 6C2.
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Thus, x(t) = (2/9) cos 6t + 1/36. Since v(t) = (−4/3) sin 6t, the mass comes to rest for the first
time when 6t = π, and at this time, its position is x = (2/9) cosπ + 1/36 = −7/36 m. The spring
force at this position has magnitude 18(7/36) = 7/2 N. Since the force of static friction is 1 N,
further motion will occur.

4. The initial-value problem describing the position x(t) of the mass from the time it starts until it
comes to a stop for the first time is

1
5

d2x

dt2
+ 5x = −1

4

(
1
5

)
g =⇒ x′′ + 25x = −g

4
, x(0) = 0, x′(0) =

1
2
.

The auxiliary equation is m2 + 25 = 0 with solutions m = ±5i, and therefore x(t) = C1 cos 5t +
C2 sin 5t − g/100. To satisfy the initial conditions, we must have 0 = C1 − g/100 and 1/2 = 5C2.
Thus, x(t) = (g/100) cos5t + (1/10) sin 5t− g/100. The mass comes to rest for the first time when

0 = x′(t) = −
g

20
sin 5t +

1
2

cos 5t =⇒ tan 5t =
10
g

.

Solutions are t = (1/5)Tan−1(10/g) + nπ/5 = 0.158998 + nπ/5, where n is an integer. The first
positive solution is t = 0.158998. The position of the mass at this time is

x =
g

100
cos 5(0.158998) +

1
10

sin 5(0.158998)− g

100
= 0.0419843 m.

The spring force at this position has magnitude 5(0.0419843) = 0.210 N. Since the maximum force
of static friction is (1/2)(1/5)g = 0.981, the mass will not move from this position.

5. The initial-value problem describing the position x(t) of the mass from the time it starts until it
comes to a stop for the first time is

1
5

d2x

dt2
+ 5x = −1

4

(
1
5

)
g =⇒ x′′ + 25x = −g

4
, x(0) = 0, x′(0) = 2.

The auxiliary equation is m2 + 25 = 0 with solutions m = ±5i, and therefore x(t) = C1 cos 5t +
C2 sin 5t − g/100. To satisfy the initial conditions, we must have 0 = C1 − g/100 and 2 = 5C2.
Thus, x(t) = (g/100) cos5t + (2/5) sin 5t − g/100. The mass comes to rest for the first time when

0 = x′(t) = − g

20
sin 5t + 2 cos5t =⇒ tan 5t =

40
g

.

Solutions are t = (1/5)Tan−1(40/g) + nπ/5 = 0.266059 + nπ/5, where n is an integer. The first
positive solution is t = 0.266059. The position of the mass at this time is

x =
g

100
cos 5(0.266059) +

2
5

sin 5(0.266059)− g

100
= 0.313754 m.

The spring force at this position has magnitude 5(0.313754) = 1.57 N. Since the maximum force
of static friction is (1/2)(1/5)g = 0.981, the mass will move from this position. The initial-value
problem describing the position x(t) of the mass until it comes to a stop for the second time is

1
5

d2x

dt2
+ 5x =

9
20

=⇒ x′′ + 25x =
g

4
, x(0) = 0.313754, x′(0) = 0,

where we have re-initiated time as t = 0 at the start of this motion. A general solution of the
differential equation is x(t) = C1 cos 5t + C2 sin 5t + g/100. To satisfy the initial conditions, we
must have 0.313754 = C1 + g/100 and 0 = 5C2. Thus, x(t) = 0.215654 cos5t + g/100. The mass
comes to rest for the second time when

0 = x′(t) = −5(0.215654) sin5t =⇒ t =
nπ

5
.

The first positive solution is t = π/5. The position of the mass at this time is
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x = 0.215654 cosπ +
g

100
= −0.117554 m.

The spring force at this position has magnitude 5(0.117554) = 0.588 N. Since this is less than the
maximum force of static friction, the mass will not move from this position.

6. The initial-value problem describing the position x(t) of the mass relative to its equilibrium position
is

1
10

d2x

dt2
+ 4000x = 3 cos100t =⇒ x′′ + 40 000x = 30 cos100t, x(0) = 0, x′(0) = 10.

The auxiliary equation is m2 + 40 000 = 0 with solutions m = ±200i. A general solution of the
associated homogeneous equation is xh(t) = C1 cos 200t + C2 sin 200t. Substituting a particular
solution of the form xp = A cos 100t + B sin 100t into the differential equation gives

(−10 000A cos100t− 10 000B sin 100t) + 40 000(A cos100t + 100B sin 100t) = 30 cos 100t.

This implies that A = 1/1000 and B = 0, so that x(t) = C1 cos 200t+C2 sin 200t+(1/1000) cos100t.
The initial conditions require 0 = C1 +1/1000 and 10 = 200C2. Thus, x(t) = −(1/1000) cos200t+
(1/20) sin 200t + (1/1000) cos100t m. Because displacements are bounded, resonance does not
occur.

7. The initial-value problem describing the position x(t) of the mass relative to its equilibrium position
is

1
10

d2x

dt2
+ 4000x = 3 cos200t =⇒ x′′ + 40 000x = 30 cos200t, x(0) = 0, x′(0) = 10.

The auxiliary equation is m2 + 40 000 = 0 with solutions m = ±200i. A general solution of the
associated homogeneous equation is xh(t) = C1 cos 200t + C2 sin 200t. Substituting a particular
solution of the form xp = At cos 200t + Bt sin 200t into the differential equation gives

(−400A sin 200t− 40 000At cos200t + 400B cos 200t− 40 000Bt sin200t)
+ 40 000(At cos200t + Bt sin 200t) = 30 cos 200t.

This implies that A = 0 and B = 3/40, so that x(t) = C1 cos 200t + C2 sin 200t + (3t/40) sin 200t.
The initial conditions require 0 = C1 and 10 = 200C2. Thus, x(t) = (1/20 + 3t/40) sin 200t m.
Because displacements are unbounded, resonance occurs.

8. The initial-value problem describing the position of the mass relative to its equilibrium position is

(1)
d2x

dt2
+ 64x = 2 sin 4t, x(0) = 0, x′(0) = 0.

The auxiliary equation is 0 = m2 +64 with solutions m = ±8i. A general solution of the associated
homogeneous differential equation is xh(t) = C1 cos 8t + C2 sin 8t. A particular solution is of the
form xp(t) = A sin 4t + B cos 4t. When we substitute this into the differential equation, we obtain

(−16A sin 4t − 16B cos 4t) + 64(A sin 4t + B cos 4t) = 2 sin 4t.

This implies that A = 1/24 and B = 0. A general solution of the differential equation is therefore
x(t) = C1 cos 8t + C2 sin 8t + (1/24) sin 4t. To satisfy the initial conditions, we must have 0 = C1

and 0 = 8C2 + 1/6. Thus, x(t) = −(1/48) cos8t + (1/24) sin 4t m. For large t, oscillations are
bounded so resonance does not occur.

9. The initial-value problem describing the position of the mass relative to its equilibrium position is

(1)
d2x

dt2
+ 64x = 2 sin 8t, x(0) = 0, x′(0) = 0.

The auxiliary equation is 0 = m2 +64 with solutions m = ±8i. A general solution of the associated
homogeneous differential equation is xh(t) = C1 cos 8t + C2 sin 8t. A particular solution is of the
form xp(t) = At sin 8t+Bt cos 8t. When we substitute this into the differential equation, we obtain
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= (−64At sin 8t16A cos 8t − 64Bt cos 8t − 16B sin 8t) + 64(At sin 8t + Bt cos 8t) = 2 sin 8t.

When we equate coefficents of sin 8t and cos 8t, we get

−16B = 2, 16A = 0.

Thus, xp(t) = −(t/8) cos 8t, and x(t) = C1 cos 8t + C2 sin 8t − (t/8) cos 8t. To satisfy the initial
conditions, we must have 0 = C1 and 0 = 8C2 − 1/8. Hence, x(t) = (1/64) sin 8t − (t/8) cos 8t m.
For large t, oscillations are unbounded and resonance occurs.

10. The differential equation describing the position of the mass is M
d2x

dt2
+ kx = A cosωt. Solutions

of the auxiliary equation Mm2 + k = 0 are m = ±
√

k/Mi. Hence, a general solution of the
associated homogeneous equation is x(t) = C1 cos

√
k/Mt + C2 sin

√
k/Mt. Resonance occurs

when
√

k/M = ω.
11. The initial-value problem describing the position x(t) of the mass relative to its equilibrium position

is

1
5

d2x

dt2
+

3
2

dx

dt
+ 10x = 4 sin 10t =⇒ 2x′′ + 15x′ + 100x = 40 sin10t, x(0) = 0, x′(0) = 0.

The auxiliary equation is 2m2 + 15m + 100 = 0 with solutions m = (−15 ± 5
√

23i)/4. A general
solution of the associated homogeneous equation is

xh(t) = e−15t/4

(
C1 cos

5
√

23t
4

+ C2 sin
5
√

23t
4

)
.

A particular solution of the differential equation is of the form xp(t) = A sin 10t+B cos 10t. When
we substitute this into the differential equation, we obtain

2(−100A sin10t − 100B cos 10t) + 15(10A cos 10t− 10B sin 10t)
+ 100(A sin 10t + B cos 10t) = 40 sin 10t.

When we equate coefficients of sin 10t and cos 10t, we get

−200A− 150B + 100A = 40, −200B + 150A + 100B = 0.

The solution is A = −8/65 and B = −12/65. Hence, a general solution of the differential equation
is x(t) = e−15t/4[C1 cos (5

√
23t/4) + C2 sin (5

√
23t/4)]− (4/65)(3 cos10t + 2 sin 10t). To satisfy the

initial conditions, we must have 0 = C1 − 12/65 and 0 = −15C1/4 + 5
√

23C2/4 − 16/13. These
imply that C1 = 12/65 and C2 = 20/(13

√
23), and therefore

x(t) = e−15t/4

(
12
65

cos
5
√

23t
4

+
20

13
√

23
sin

5
√

23t
4

)
− 4

65
(3 cos 10t + 2 sin 10t) m.

12. (a) The initial-value problem describing the position x(t) of the mass relative to its equilibrium
position is

d2x

dt2
+ 2

dx

dt
+ 100x = 2 sin ωt, x(0) = 0, x′(0) = 0.

The auxiliary equation is m2 +2m+100 = 0 with solutions m = −1±3
√

11i. A general solution of
the associated homogeneous equation is xh(t) = e−t

(
C1 cos 3

√
11t + C2 sin 3

√
11t
)
. A particular

solution of the differential equation is of the form xp(t) = A sin ωt + B cosωt. When we substitute
this into the differential equation, we obtain

(−ω2A sinωt − ω2B cosωt) + 2(ωA cosωt − ωB sin ωt)
+ 100(A sinωt + B cosωt) = 2 sinωt.
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When we equate coefficients of sinωt and cosωt, we get

−ω2A − 2ωB + 100A = 2, −ω2B + 2ωA + 100B = 0.

The solution is A = 2(100− ω2)/[(100− ω2)2 + 4ω2] and B = −4ω/[(100− ω2)2 + 4ω2]. Hence, a
general solution of the differential equation is

x(t) = e−t
(
C1 cos 3

√
11t + C2 sin 3

√
11t
)

+
1

(100− ω2)2 + 4ω2
[2(100− ω2) sin ωt − 4ω cosωt].

To satisfy the initial conditions, we must have

0 = C1 −
4ω

(100− ω2)2 + 4ω2
, 0 = −C1 + 3

√
11C2 +

2ω(100− ω2)
(100− ω2)2 + 4ω2

.

These imply that

C1 =
4ω

(100− ω2)2 + 4ω2
, C2 =

2
3
√

11

[
ω(ω2 − 98)

(100− ω2)2 + 4ω2

]
.

The position of the mass is therefore

x(t) = e−t

{
4ω

(100 − ω2)2 + 4ω2
cos 3

√
11t +

2
√

11ω(ω2 − 98)
33[(100− ω2)2 + 4ω2]

sin 3
√

11t

}

+
1

(100− ω2)2 + 4ω2
[2(100− ω2) sin ωt − 4ω cosωt]

=
1

(100− ω2)2 + 4ω2

{
e−t

[
4ω cos 3

√
11t +

2
√

11ω(ω2 − 98)
33

sin 3
√

11t

]

+ [2(100− ω2) sin ωt − 4ω cosωt]
}

m.

(b) Resonance occurs when the amplitude of the steady-state part of the solution, namely,

xp(t) =
1

(100− ω2)2 + 4ω2
[2(100− ω2) sin ωt − 4ω cosωt],

is a maximum. The amplitude is

A =
1

(100− ω2)2 + 4ω2

√
4(100− ω2)2 + 4ω2 =

2√
(100− ω2)2 + 4ω2

.

This is a maximum when the derivative of (100− ω2)2 + 4ω2 vanishes,

0 = 2(100− ω2)(−2ω) + 8ω =⇒ ω = 7
√

2.

Maximum amplitude is

2√
(100 − 98)2 + 4(98)

=
√

11
33

m.

13. (a) Substituting a particular solution of the form xp(t) = B cosωt + C sin ωt into the differential
equation gives

M(−ω2B cosωt − ω2C sin ωt) + β(−ωB sin ωt + ωC cosωt) + k(B cosωt + C sinωt) = A cosωt.

When we equate coefficients of cosωt and sin ωt, we obtain

(k − Mω2)B + βωC = A, −βωB + (k − Mω2)C = 0.



EXERCISES 5.3 207

The solution of these is B =
A(k − Mω2)

(k − Mω2)2 + β2ω2
, C =

Aβω

(k − Mω2)2 + β2ω2
. The particular so-

lution is therefore

xp(t) =
A

(k − Mω2)2 + β2ω2
[(k − Mω2) cosωt + βω sin ωt].

(b) If we set (k − Mω2) cos ωt + βω sin ωt = R sin (ωt + φ) = R(sinωt cosφ + cosωt sinφ), and
equate coefficients of sin ωt and cosωt,

k − Mω2 = R sin φ, βω = R cosφ.

These imply that R2 = (k−Mω2)2 +β2ω2. The amplitude of the steady-state part of the solution
is therefore

A

(k − Mω2)2 + β2ω2

√
(k − Mω2)2 + β2ω2 =

A√
(k − Mω2)2 + β2ω2

.

It is a maximum when (k−Mω2)2 +β2ω2 is smallest. To determine the value of ω that yields the
minimum, we solve

0 = 2(k − Mω2)(−2Mω) + 2β2ω = 2ω[−2M(k − Mω2) + β2].

The nonzero solution is ω =
√

k/M − β2/(2M2). The amplitude at this value of ω is

A√[
k − M

(
k

M
− β2

2M2

)]2
+ β2

(
k

M
− β2

2M2

) =
2AM

β
√

4kM − β2
.

14. (a) Suppose y measures the distance the mass moves after striking the platform. Then Newton’s
second law applied to the motion of the mass gives

20
d2y

dt2
= −1000y − 10

dy

dt
+ 20g.

When we divide by 10 and attach initial displacement and velocity, we obtain the initial-value
problem

2
d2y

dt2
+

dy

dt
+ 100y = 2g, y(0) = 0, y′(0) = 2.

The auxiliary equation 2m2 +m+100 = 0 has roots m = (−1±
√

799i)/4. Consequently, a general
solution of the differential equation is

y(t) = e−t/4

(
C1 cos

√
799t
4

+ C2 sin
√

799t
4

)
+

g

50
.

The initial conditions require

0 = y(0) = C1 +
g

50
, 2 = y′(0) = −C1

4
+

√
799C2

4
.

These imply that C1 = −g/50 and C2 = (400− g)/(50
√

799), and therefore

y(t) = e−t/4

[
− g

50
cos

√
799t
4

+
(

400− g

50
√

799

)
sin

√
799t
4

]
+

g

50
.

(b) The maximum displacement experienced by the mass occurs when the mass comes to an
instantaneous stop for the first time. We therefore set
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0 =
dy

dt
= −

1
4
e−t/4

[
−

g

50
cos

√
799t
4

+
(

400− g

50
√

799

)
sin

√
799t
4

]

+ e−t/4

[√
799g
200

sin
√

799t
4

+
√

799
4

(
400− g

50
√

799

)
cos

√
799t
4

]
.

This equation implies that

t =
4√
799

Tan−1




2
400− g

200
√

799
−

√
799g
200


 =

4√
799

(−0.9883 + nπ),

where n is an integer. The smallest positive solution occurs for n = 1, and for this value of n,
t = 0.3047 s. The displacement of the mass at this time is y(0.3047) = 0.51 m.

15. Suppose the mass of the chain is M so that its mass
per unit length is M/a. When the length of chain
hanging from the edge of the table is y, then

M
d2y

dt2
=

Mgy

a
. y

y=0

This differential equation is subject to the initial
conditions y(0) = b and y′(0) = 0, provided t = 0 is taken at the instant motion begins. The
differential equation is linear with auxiliary equation m2 − g/a = 0 =⇒ m = ±

√
g/a. A general

solution is therefore y(t) = C1e
√

g/at + C2e
−
√

g/at. The initial conditions require

b = C1 + C2, 0 =
√

g

a
C1 −

√
g

a
C2 =⇒ C1 = C2 = b/2.

Thus, y(t) =
b

2
(e
√

g/at + e−
√

g/at). The chain slides off the table when y = a in which case

a =
b

2
(e
√

g/at + e−
√

g/at) =⇒ e2
√

g/at − 2a

b
e
√

g/at + 1 = 0.

This is a quadratic in e
√

g/at with solutions

e
√

g/at =
2a/b±

√
4a2/b2 − 4
2

=
1
b
(a ±

√
a2 − b2) =⇒ t =

√
a

g
ln

(
a ±

√
a2 − b2

b

)
.

It is straightforward to verify that (a −
√

a2 − b2)/b < 1 in which case t would be negative, an

unacceptable value. Hence, t =
√

a

g
ln

(
a +

√
a2 − b2

b

)
.

16. (a) Suppose the mass of the chain is M so that its mass
per unit length is M/a. When the length of chain
hanging from the edge of the table is b, the force
of gravity on this much chain must be larger than
the force of friction on that part of the chain still
on the table, y

y=0

(
bM

a

)
g > µs

[
(a − b)M

a

]
g.

Thus, the smallest amount of hanging chain is b = µs(a − b).
(b) When the length of chain hanging from the edge of the table is y, then
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d2y

dt2
=

Mgy

a
− µkMg

a
(a − y) =⇒ d2y

dt2
− g

a
(1 + µk)y = −µkg.

This differential equation is subject to the initial conditions y(0) = b and y′(0) = 0, provided
t = 0 is taken at the instant motion begins. The differential equation is linear with auxiliary
equation m2 − (g/a)(1 + µk) = 0 =⇒ m = ±

√
g(1 + µk)/a. A general solution is therefore

y(t) = C1e
√

g(1+µk)/at + C2e
−
√

g(1+µk)/at + aµk/(1 + µk). The initial conditions require

b = C1 + C2 +
aµk

1 + µk
, 0 =

√
g(1 + µk)

a
C1 −

√
g(1 + µk)

a
C2 =⇒ C1 = C2 =

1
2

(
b − aµk

1 + µk

)
.

Thus, y(t) =
1
2

(
b − aµk

1 + µk

)
(e
√

g(1+µk)/at + e−
√

g(1+µk)/at) +
aµk

1 + µk
. The chain slides off the

table when y = a,

a =
1
2

(
b −

aµk

1 + µk

)
(e
√

g(1+µk)/at + e−
√

g(1+µk)/at) +
aµk

1 + µk
,

which can be expressed in the form

e2
√

g(1+µk)/at − 2a

b(1 + µk) − aµk
e
√

g(1+µk)/at + 1 = 0.

This is a quadratic in e
√

g(1+µk)/at with solutions

e
√

g(1+µk)/at =
1
2

[
2a

b(1 + µk) − aµk
±

√
4a2

[b(1 + µk) − aµk]2
− 4

]
=

a ±
√

a2 − [b(1 + µk) − aµk]2

b(1 + µk) − aµk
,

and

t =
√

a

g(1 + µk)
ln

{
a ±

√
a2 − [b(1 + µk) − aµk]2

b(1 + µk) − aµk

}
.

It can be shown that the negative root leads to a value t < 0. Hence,

t =
√

a

g(1 + µk)
ln

{
a +

√
a2 − [b(1 + µk) − aµk]2

b(1 + µk) − aµk

}
.

17. Let us use the coordinate system of Figure 5.5 to measure the displacement of the mass. If s is the
stretch in the spring at equilibrium, then when the mass is at position x, the stretch is s−x+f(t).
Newton’s second law for the motion gives

1
2

d2x

dt2
= −10

dx

dt
−

g

2
+ 250[s− x + f(t)].

At equilibrium, −g/2 + 250s =, so that

1
2

d2x

dt2
= −10

dx

dt
+ 250[−x + f(t)] =⇒ d2x

dt2
+ 20

dx

dt
+ 500x = 50 sin2t,

subject to x(0) = x′(0) = 0. The auxiliary equation is m2 + 20m + 500 = 0 with solutions
m = −10± 5

√
6i. A general solution of the associated homogeneous equation is therefore xh(t) =

e−10t(C1 cos 5
√

6t + C2 sin 5
√

6t). When we substitute a particular solution of the form xp(t) =
A sin 2t + B cos 2t into the differential equation, we obtain

(−4A sin 2t − 4B cos 2t) + 20(2A cos 2t − 2B sin 2t) + 500(A sin 2t + B cos 2t) = 50 sin 2t.

Equating coeffcients to zero gives

496A − 40B = 50, 40A + 496B = 0,
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the solution of which is A = 1550/15, 446 and B = −125/15 446. A general solution of the
nonhomogeneous differential equation is

x(t) = e−10t(C1 cos 5
√

6t + C2 sin 5
√

6t) +
1550
15 446

sin 2t − 125
15 446

cos 2t.

The initial conditions require

0 = x(0) = C1 −
125

15 446
, 0 = x′(0) = −10C1 + 5

√
6C2 +

1550
7723

.

These give C2 = 370/(15 446
√

6). Thus, the position of the mass is given by

x(t) = e−10t

(
125

15 446
cos 5

√
6t +

370
15 446

√
6

sin 5
√

6t

)
+

1550
15 446

sin 2t − 125
15 446

cos 2t.

A plot of this function is shown to the right.
The damping is so severe that the transient
terms disappear almost immediately. The steady-
state terms of the particular solution persist
forever. The mass oscillates at the same frequency
as the motion of the upper support, but with a
slightly smaller amplitude, and out of phase with it.

x

t

0.1

-0.1

1 2 3 4

18. The initial-value problem describing the position x(t) of the mass from the time it starts until it
comes to a stop for the first time is

M
d2x

dt2
+ kx = −µMg, x(0) = x0, x′(0) = v0.

The auxiliary equation is Mm2 + k = 0 with solutions m = ±
√

k/Mi, and therefore x(t) =
C1 cos

√
k/Mt + C2 sin

√
k/Mt − µMg/k. To satisfy the initial conditions, we must have x0 =

C1 − µMg/k and v0 =
√

k/MC2. Thus,

x(t) =
(

x0 +
µMg

k

)
cos

√
k

M
t +

√
M

k
v0 sin

√
k

M
t.

The mass comes to a stop for the first time when

0 = x′(t) = −
√

k

M

(
x0 +

µMg

k

)
sin

√
k

M
t + v0 cos

√
k

M
t.

We can rewrite this equation in the form

tan

√
k

M
t =

v0√
k/M(x0 + µMg/k)

=⇒ t =

√
M

k

[
Tan−1

(
v0

√
M/k

x0 + µMg/k

)
+ nπ

]
,

where n is an integer. For the smallest positive solution we choose n = 0.

19. The initial-value problem describing the position x(t) of the mass from the time it starts until it
comes to a stop for the first time is

M
d2x

dt2
+ kx = µMg, x(0) = x0, x′(0) = v0,

where v0 < 0. The auxiliary equation is Mm2 +k = 0 with solutions m = ±
√

k/Mi, and therefore
x(t) = C1 cos

√
k/Mt + C2 sin

√
k/Mt + µMg/k. To satisfy the initial conditions, we must have

x0 = C1 + µMg/k and v0 =
√

k/MC2. Thus,

x(t) =
(

x0 −
µMg

k

)
cos

√
k

M
t +

√
M

k
v0 sin

√
k

M
t.
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The mass comes to a stop for the first time when

0 = x′(t) = −
√

k

M

(
x0 −

µMg

k

)
sin

√
k

M
t + v0 cos

√
k

M
t.

Except when x0 = µMg/k, we can rewrite this equation in the form

tan

√
k

M
t =

v0√
k/M(x0 − µMg/k)

=⇒ t =

√
M

k

[
Tan−1

(
v0

√
M/k

x0 − µMg/k

)
+ nπ

]
,

where n is an integer. For the smallest positive solution, we obtain

t =





√
M

k
Tan−1

(
v0

√
M/k

x0 − µMg/k

)
, when x0 < µMg/k

√
M

k

π

2
, when x0 = µMg/k

√
M

k

[
Tan−1

(
v0

√
M/k

x0 − µMg/k

)
+ π

]
, when x0 > µMg/k.

20. If y > 0 is the depth of the bottom surface of the cube, then Newton’s second law from time t = 0
when the cube is released until it is completely submerged gives

1200
d2y

dt2
= 1200g − 2

dy

dt
− y(1)2(1000)g =⇒ 600

d2y

dt2
+

dy

dt
+ 500gy = 600g,

subject to y(0) = 0 and y′(0) = 0. The auxiliary equation is

600m2 + m + 500g = 0 with solution m =
−1±

√
1 − 1 200 000
1200

=
−1 ±

√
1 199 999i

1200
.

If we set ω =
√

1 199 999/1200, then a general solution of the differential equation is

y(t) = e−t/1200(C1 cosωt + C2 sin ωt) +
6
5
.

The initial conditions require

0 = y(0) = C1 +
6
5
, 0 = y′(0) = − C1

1200
+ ωC2.

These give C1 = −6/5 and C2 = −1/(1000ω), and therefore

y(t) =
6
5
− e−t/1200

1000ω
(1200ω cosωt + sin ωt).

This is valid as long as y ≤ 1. When y = 1,

1 =
6
5
− e−t/1200

1000ω
(1200ω cosωt + sinωt),

the numerical solution of which is t = 1.54 s.
A plot of y(t) for 0 ≤ t ≤ 1.54 is shown
to the right.

y

t1

1

0.5

21. If y > 0 is the depth of the bottom surface of the cube, then Newton’s second law from time t = 0
when the cube is released gives
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500
d2y

dt2
= 500g − 2

dy

dt
− y(1)2(1000)g =⇒ 250

d2y

dt2
+

dy

dt
+ 500gy = 250g,

subject to y(0) = 0 and y′(0) = 0. The auxiliary equation is

250m2 + m + 500g = 0 with solution m =
−1 ±

√
1 − 500 000
500

=
−1 ±

√
499 999i

500
.

If we set ω =
√

499 999/500, then a general solution of the differential equation is

y(t) = e−t/500(C1 cosωt + C2 sinωt) +
1
2
.

The initial conditions require

0 = y(0) = C1 +
1
2
, 0 = y′(0) = − C1

500
+ ωC2.

These give C1 = −1/2 and C2 = −1/(1000ω), and therefore

y(t) =
1
2
− e−t/500

1000ω
(500ω cosωt + sinωt).

A plot of this function is shown
to the right.

y

t

1

20 40

1/2

22. (a) If x is the length of the longer piece of cable, then Newton’s second law for acceleration of the
cable is

25ρ
d2x

dt2
= 9.81ρz,

where ρ is the mass per unit length of the cable,
and z is as shown in the figure to
the right. Since x + (x − z) = 25, it follows
that z = 2x − 25 and

25
d2x

dt2
= 9.81(2x− 25),

or,

25
d2x

dt2
− 19.62x = −245.25.

x

z

x=0

The auxiliary equation 25m2 − 19.62 = 0 has roots ±
√

19.62/25. If we denote the positive
by root m, then x(t) = C1e

mt + C2e
−mt + 245.25/19.62. The initial conditions x(0) = 15

and x′(0) = 0 require 15 = C1 + C2 + 245.25/19.62 and 0 = mC1 − mC2. These imply that
C1 = C2 = 1.25. The cable slides off the peg when 25 = 1.25(emt + e−mt) + 245.25/19.62 and
the solution of this equation is 2.59 s.
(b) In this case Newton’s second is

25ρ
d2x

dt2
= 9.81ρz − 9.81ρ =⇒ 25

d2x

dt2
− 19.62x = −255.06.

The solution of this differential equation is x(t) = C1e
mt + C2e

−mt + 255.06/19.62, where m is as
in part (a). The initial conditions require 15 = C1 + C2 + 255.06/19.62 and 0 = mC1 − mC2, and
these gives C1 = C2 = 1. The cable slides off the peg when 25 = emt + e−mt + 255.06/19.62 and
the solution of this equation is 2.80 s.


