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CHAPTER 5
EXERCISES 5.1

. With the coordinate system of Figure 5.5, the initial-value problem describing the position z(t) of
the mass is
d2

1)— e + 162 =0, z(0) = —1/10, 2'(0) =0.

The auxiliary equation is m?+16 = 0 with solutions m = 44i. A general solution of the differential
equation is z(t) = C7 cos4t + Cysin4t. To satisfy the initial conditions, we must have —1/10 = C
and 0 = 4C5. Thus, z(t) = —(1/10) cos 4t m.

. With the coordinate system of Figure 5.3, the initial-value problem describing the position z(t) of
the mass is

1 d%x 1
To g T100r =0, 2(0) =5 '(0)=0.

The auxiliary equation is m? + 1000 = 0 with solutions m = +10v/10i. A general solution of the
differential equation is z(t) = C4 cos 104v/10t + C5 sin 104/10¢. To satisfy the initial conditions, we
must have 1/20 = C; and 0 = 10v/10C5. R
Thus, z(t) = (1/20) cos 10/10t m. A graph 0.05

of this function is shown to the right. The ‘ ‘ ‘

amplitude of the oscillations is 5 cm, the
period is 27/(104/10) = v/107/50 s, and 1
the frequency is 50/(v/107) = 5v/10/7 Hz. ' V '

. With the coordinate system of Figure 5.3, the initial-value problem describing the position z(¢) of
the mass is

1 d%x ,
T0diZ + 100z = 0, z(0) =0, 2'(0)=-3.
The auxiliary equation is m? 4+ 1000 = 0 with solutions m = +10+/10i. A general solution of the
differential equation is () = C; cos 10v/10t + Cy sin 10v/10t. To satisfy the initial conditions, we
must have 0 = C; and —3 = 10v/10C5. Thus,

x(t) = (—3+/10/100) sin 10/10¢t m. A graph 0.095
of this function is shown to the right. The
amplitude of the oscillations is 3\/@/ 100 m,
the period is 27/(104/10) = /107/50 s, and ]
the frequency is 50/(v/107) = 5v/10/7 Hz.

X

. With the coordinate system of Figure 5.3, the initial-value problem describing the position z(¢) of
the mass is

1 d?z 1
Toae T 100z = 0, z(0) = —, 2'(0)=-3.

The auxiliary equation is m? 4+ 1000 = 0 with solutions m = £10+/10i. A general solution of the
differential equation is x(t) = Cj cos 104/10t + C5 sin 104/10¢. To satisfy the initial conditions, we
must have 1/20 = C; and —3 = 104/10C5. Thus,
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1 3v10
x(t) = 20 C0s 10V/10t — 100 sin 10v/10¢ m.

A graph of this function is shown to the o107
right. The amplitude of the oscillations is 0.05

2

1\* (=310 V115 : 7
— | + = m.

20 100 100 v '

The period is 27/(104/10) = +/107/50 s, and

the frequency is 50/(v/107) = 5v/10/7 Hz.

. With the coordinate system of Figure 5.3, the initial-value problem describing the position z(¢) of
the mass is

1 d?x 1

The auxiliary equation is m? 4+ 1000 = 0 with solutions m = £10+/10i. A general solution of the
differential equation is x(t) = Cj cos 104/10t + C5 sin 104/10¢. To satisfy the initial conditions, we
must have —1/20 = C7 and —3 = 10v/10C5. Thus,

1 3v10
x(t) = ~ 50 08 1010t — sin 10v/10¢ m.

1 0.107
A graph of this function is shown to the

right. The amplitude of the oscillations is

) () - |

20 100 100 - 005

The period is 27/(10v/10) = v/107/50 s, and
the frequency is 50/(v/107) = 5v/10/7 Haz.

. (a) With the coordinate system of Figure 5.5, the initial-value problem describing the position z(t)
of the mass is

Pz 3
QW + 1000z = 0, z(0) = ——

The auxiliary equation is 2m? + 1000 = 0 with solutions m = +10v/5i. A general solution of the
differential equation is 2(t) = Cj cos 10y/5t + Co sin104/5t. To satisfy the initial conditions, we
must have —3/100 = C; and —2 = 10v/5Cs. Thus,

3 5
x(t) = ~T0g €% 10V/5t — 2—\/5_ sin 10v/5¢ m.

A graph of this function is shown to the 004
right. The amplitude of the oscillations is /
2

-3\’ n -5\ VB9 o 03 1
100 25 | 100 00

The period is 27/(10v/5) = v/57/25 s, and

the frequency is 25/(v/57) = 5v/5/7 Hz.

(b) The initial conditions affect the amplitude, but not the period or frequency.

s

. With a mass of 8 kg, the initial-value problem for displacements is

Pz 3
_ 1 = = ——
8 72 + 1000z = 0, x(0) 1007

2'(0) = —2.

The auxiliary equation is 8m? 4+ 1000 = 0 with solutions m = +5/5i. A general solution of the
differential equation is x(t) = C; cos 5v/5t + Cy sin5v/5t. The period is 27/(5v/5) = 2/57/25 s,
double that when the mass was 2 kg. The frequency will be half its previous value.
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8. With a spring constant of 4000 N/m, the initial-value problem for displacements is

d’z 3
2 4 = P —
e + 4000z = 0, x(0) 100"

2/ (0) = —2.

The auxiliary equation is 2m? + 4000 = 0 with solutions m = £+20v/5i. A general solution of the
differential equation is z(t) = Cj cos 20v/5t + Cy sin20+v/5t. The period is 27/(20v/5) = /57/50
s, half that when the spring constant was 1000 N/m. The frequency will be double its previous
value.

9. With the coordinate system of Figure 5.5, the differential equation describing the position z(t) of
the mass is

2

dz

The auxiliary equation is 2m? + k = 0 with solutions m = 4+/k/2i. A general solution of
the differential equation is z(t) = Cy cos \/k/2t + Cysin\/k/2t. The period of the oscillations is

27 /+/k/2 and therefore the frequency is \/k/2/(27) Hz. Since this must be 3, we set 1/k/2/(27) =
3, from which k = 7272 N/m.

10. With the coordinate system of Figure 5.5, the initial-value problem describing the position z(t) of
the mass is

d’z ,
MW—i-k:v:O, xz(0) = zg, 2'(0) = vp.

The auxiliary equation is Mm? + k = 0 with solutions m = £+/k/Mi. A general solution of the
differential equation is x(t) = C; cos \/k/Mt+ Cysin y/k/Mt. To satisfy the initial conditions, we
must have zg = 2(0) = Cy and vy = 2'(0) = /k/MC5. Thus,

(t) = \/ﬁt—i—\/% i \/ﬁt
x(t) = xg cos U kvosm it

If we set this equal to Asin (v/k/Mt + ¢), then

co kt—l— M s kt*A i ktcogb—l—co kt'qﬁ
o S\/M 1/ kvosmwM = sm\/M S SHM sing | .

This implies that
| M
x9 = Asin ¢, Z 0= Acos ¢.

When these are squared and added,

Mo}
k

A? =22+

It then follows that

\/M/k’UO

A

x
sin¢=io, cosp =

11. The period of the oscillations in Exercise 10 is 27 /+/k/M = 2m+/M /k. This formula makes it clear
that when M is doubled, the period is increased by a factor of v/2. It follows that the frequency
must be decreased by the same factor.

12. (a) When damping is ignored, the differential equation describing displacements of a mass is

2

d°z
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Since velocity is a maximum when acceleration is zero, it follows that velocity is a maximum when
x = 0; that is, the mass passes through the equilibrium position.

(b) Maximum acceleration occurs when d3z/dt® = 0, and the differential equation implies that this
occurs when dz/dt = 0; that is, when the velocity of the mass is zero. This occurs when the mass
is at its maximum distance from equilibrium.

If we use differential equation 5.5 to describe oscillations of the mass, there is no difference in the
analysis.

(a) With the coordinate system of Figure 5.5, the initial-value problem describing the position z(t)
of the mass is

1 d%z 1
T 40z =0 0) = ——
oz T0r=0 2(0)=-g,

The auxiliary equation is m? 4+ 400 = 0 with solutions m = #20i. A general solution of the
differential equation is x(t) = C7cos20t + C2sin20¢. To satisfy the initial conditions, we must
have —1/50 = C; and 10 = 20C5. Thus,

2/ (0) = 10.

1 1
z(t) = ~ 55 0 20t + 3 sin 20¢ m.

(b) To simplify the remaining parts of the exercise we express z(t) in the form

1 1
~ 5 8 20t + 3 sin 20t = Asin (20t + ¢) = A(sin 20t cos ¢ + cos 20t sin ¢).

These imply that

1 1
—%:Asinqﬁ, §:Acos¢.

When these are squared and added,

~1\* /1\* 626 626
A= — Z) = —— A==
(50) +<2) 2500 50
With this value for A,
1 2
sing = ——— cos¢:—5.

V626 626
One of many expressions for ¢ is ¢ = —Sin~*(1/1/626). Thus,

V626 1
x(t) = sin (20t — 6), where § = Sin™! (—) .
50 V626
The amplitude of the motion is v/626/50 m, the period is /10 s and the frequency is 10/7 H.
(¢) The velocity of the mass is zero when

20/626 @Cn+ 17w Cn+1l)m 0
0=2a'(t) = 0t —0) — 20t—f=-TTI0 o G ERTIT T
Tt = g oos ) 2 0 20
where n > 0 is an integer.
(d) The mass passes through the equilibrium point when
0 nm
=t 20t — 0 = t=— o —
0=z(t) = 20 nr = 20+20’

where n > 0 is an integer.
(e) The mass has velocity 2 when

2v/62
2=12(t) = 56 6cos(20t—9) = cos(20t—0) = L
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This is true when

20t—9:Cos_1( 5 ) (2n+ 17w 5 ) 0 (2n+1)m

1
— t=—Cos ! — — e T
/626 2 20 " (\/_626 Tt T
where n > 0 is an integer.
(f) The mass is 1 cm above its equilibrium position when

1 V62 1
020 Gin (20t —0) —>  sin(20t— ) =

100 50 21626
This is true when
1 1 1 nmw
Sin~! | —— | + 207 —Sin~! ( > + —
_ (2\/ 626) )20 21/626 20
7 — Sin~* ( ! ) + 2nm —iSin_1 ( L ) + (@n + L
24/626 20 21626 20 ’

where n > 0 is an integer.
(g) The velocity of the mass is 12 if, and when,

19— 24/626 30
5

cos (20t — ) = cos(20t—0) = — > 1.

V626

Hence, the mass never attains this velocity.
(h) The mass is at maximum height when

V626 /62 dn+1
V026 VB2 00t 0) — sin(20t—0) =1 — 20t—g= E0FUT
50 50 2
0  (4n+ D)m
= i=mt

where n > 0 is an integer. This happens for the second time when n = 1, in which case t =
/20 + 7 /40.

If s is the stretch in the spring at equilibrium, then ks = Mg so that s = Mg/k. This is the initial
displacement of the mass relative to the equilibrium position. The initial-value problem describing
the position z(t) of the mass relative to the equilibrium position is

d? M

EZ +kr=0, 2(0)==2 0)=o0.

The auxiliary equation is Mm? + k = 0 with solutions m = £+/k/Mi. A general solution of the
differential equation is x(t) = C cos (y/k/Mt) + Casin (1/k/Mt). To satisfy the initial conditions,
we must have Mg/k = C; and 0 = \/k/MCs5. Thus,

M |k
x(t) = Tg cos Ht m.

From time ¢t = 0 when the container is attached to the spring until water has completely drained
out, the mass of the container is M — r¢/m.
(a) With the coordinate system of Figure 5.4, Newton’s second law 3.4 gives

d rt\ dy rt dy
— | M-——=)=|==(M-—)g— 5= —ky.
dt K m> dt] ( m>g b ~ kv

By expanding the first term, we can write the differential equation in the form

rt\ d%y r\ dy rt
(M‘a)W*(ﬁ‘a)a”y—‘(f”‘a)g'

The initial-value problem is this differential equation subject to y(0) = 0 = y'(0).

M
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(b) Consider now the coordinate system of Figure 5.5 where = 0 corresponds to the position of
the container were it full and at equilibrium. The stretch s in the spring at this position is given
by the equation ks — Mg = 0. Newton’s second law gives

d rt\ dz rt dx

When we expand and use the equation Mg — ks = 0, we find

d?*z r\ dz rgt
M- —— )=+ krx=—.
( )dt2+(6 m)dt+x m

The initial-value problem is this differential equation subject to 2(0) = Mg/k and z'(0) = 0.
Because the coefficient of the second derivative in both equations is not constant, we cannot solve
the differential equation with the techniques that we now have available.

(a) Since the cube floats half submerged,
its density is one-half that of water, namely

500 kg/m3. Suppose we let x denote the
distance of the midpoint of the cube below 20
the surface of the water. When the midpoint i -
is * m below the surface, the force on the T R X
cube is the buoyant force due to Archimedes’ L2
principle less the force of gravity, l
L
—9810L? (5 + :17> +4905L% = —9810L%z. L

The differential equation describing oscillations of the cube is therefore

d’z 981

500L°— = —9810L> —a=0.
a2 T = TRt

(b) The auxiliary equation m? + 981/(50L) = 0 has solutions m = +,/981/(50L)i, and therefore

ClCOS”5OLt+C2smw5OL

1/981/(50L) 0 705
Hz
27 VI
Let BC' be the line on the cylinder that resides in the surface of

the water when the cylinder is at equilibrium. If x represents
the depth of BC below the surface when the cylinder is in motion,

The frequency of the oscillations is

then Newton’s second law for the acceleration of the cylinder is =0
& |
MEZ = —9.81(1000)p(Ax), L Bl c
dt? X

where M is the mass of the cylinder, A is its cross-sectional
area, and p is its density. Since M = pAL, where L is the
length of the cylinder,

2

d &z
pALW;C = —0810pAz —> L= + 9810z = 0.

The auxiliary equation Lm? + 9810 = 0 has roots m = £,/9810/Li, so that

= (C}c0s4/9810/Lt + Cysin \/9810/Lt. Since the period of the oscillations is 4 s, it fol-

lows that 2m,/L/9810 = 4 = L = 39240/72. The mass of the cylinder is therefore pAL =
p(7/100)(39 240 /72) = 124.9p ke.
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Because the sphere floats half submerged, its
density is one-half that of water, namely

500 kg/m3. The resultant vertical force

on the sphere when its centre is y m below
the surface is the buoyant force due to the
water displaced by the sphere less the force
of gravity on the sphere,

4
—9810V + 4905 (g) TR3,

A

\X”r(z-y)Z:R2

<=

X

zy

193

where V is the volume of water displaced by the sphere when its centre is y m below the surface.

We can calculate V' with the following double iterated integral,

Rty py/R2—(2—y)? R4y
V:/ / 27m:dxdz:27r/ {
0 0 0

:w/R+y[R2—(z—y)2]dz=7r{R22—7(2_@3
0

2

R+y

3

= g(?R?’ + 3Ry — ).

2 R2—(z—y)?
x_} dz
0

The resultant force on the sphere when its centre is at depth y is therefore

—9810 19620 9810
T(2R® + 3R%y — ) + — R = — Ty
Newton’s second law now gives
4 d*>y 98107 d*y
—7R3(500)—= = 3 _3R? - Y9I __
g RG00) G = 5 2 dt? 2R3

This is not a linear equation.

— 3R%y).

3(9.81) (Rzy - y_3> |
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EXERCISES 5.2
. The initial-value problem describing the position z(t) of the mass is

d*r 1 dx 1

(1)@4‘1—0%4—16&5—0, LL‘(O)——l—O,

The auxiliary equation is 10m? + m + 160 = 0 with solutions m = (—1 4 9v/79i)/20. A general

solution of the differential equation is x(t) = e~t/29[C} cos (9v/79t/20) + Cy sin (9v/79¢/20)]. To

satisfy the initial conditions, we must have —1/10 = C; and 0 = —C;/20 + 9v/79C5/20. These
give

2'(0) = 0.

42 1 9VT9t V79 . 9Vt
x(t)=e ——cos - sin m
10 20 7110 20

. The initial-value problem describing the position z(t) of the mass is

d*x dx 1
1)—% 4+ 10— + 162 =0 0)=—— (0) = 0.
(g +105 +162=0,  2(0) = -1, @'(0)
The auxiliary equation is m? + 10m + 16 = 0 with solutions m = —2, —8. A general solution of the

differential equation is x(t) = Cre~2! + Coe™8. The initial conditions require —1/10 = C; + Co
and 0 = —2C; — 8Cy. These give O = —2/15 and Cq = 1/30. Thus, z(t) = (e =% — 4¢72)/30 m.

. The differential equation for motion with an unspecified damping factor is
d?z dx

1)— — 4+ 16x = 0.

()G + g + 162

Critically damped motion ocurs when roots of the auxiliary equation m? 4+ Sm + 16 = 0 are real
and equal, and this occurs when the discriminant of the quadratic is equal to zero,

(% —4(1)(16) =0 = B =8.
. The initial-value problem describing the position x(t) of the mass is

1 d%x dx 1
—— +40— 44000z = 0 0) =—
o ae 10 TA000e =0 =(0) =g,
The auxiliary equation is m? 4+ 400m + 40000 = 0 with solutions m = —200,—200. A general
solution of the differential equation is x(t) = (C7 + Cat)e2°%t. To satisfy the initial conditions,

we must have

'(0) = —4.

1
% =(C1;, —4=-200C;+ Cy — Cy =0.
Thus, x(t) = (1/50)e~2%% m. Since this function is never equal to zero, the mass does not pass

through the equilibrium position.

. The initial-value problem describing the position z(t) of the mass is

1 d%x dz 1

— — + 40— + 4000z =0 0)=—

woaz V" = 2(0)
The auxiliary equation is m? + 400m + 40000 = 0 with solutions m = —200, —200. A general
solution of the differential equation is z(t) = (C1 + Cat)e™2°%t. To satisfy the initial conditions,
we must have

2/ (0) = —10.

1

1
Thus, z(t) = (% — 6t) e~290% . The mass passes through the equilibrium position if this func-

tion is ever equal to zero,
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1 1
26t e—200t — f— g
(50 6)6 0 == 300 °

(a) The initial-value problem describing the position z(t) of the mass is

d?z dx 1
1 _ 1 e = = — / = .
( )dt2 + 5dt + 50z = 0, x(0) 500 © (0)=3
The auxiliary equation is m? + 15m + 50 = 0 with solutions m = —5, —10. A general solution of

the differential equation is z(t) = Cre~5 4+ Cae ™19, To satisfy the initial conditions, we must have

1 7 13
%—01-1-02, 3=-5C; — 10C, = (;'1_1_07 02__%,

1
Thus, z(t) = 20 (1465 — 13~ '%) m.

(b) The mass passes through the equilibrium position if this function is ever equal to zero,

st 13

i -5t —10t\ _ _ 2
(14e Be ) =0 = e =10

20

Since this cannot happen for ¢ > 0, the mass does not pass through its equilibrium position.

(¢) The mass is 1 cm above the equilibrium position when

1 1

— (147 — 13719 = — — e!% — 70e" + 65 = 0.

20 (14 ) = 100 ¢ o
Solutions of this quadratic equation in e°* are .

ot 70 £+ /4900 — 4(65) _ 35 1 9v/200.

2
Since t must be positive, we take the positive root, 0.1
in which case t = (1/5) In (35 + 21/290) s. 005

0.5 17
(a) The initial-value problem describing the position z(t) of the mass is
d*x dz 1
1)—% + 15— +50x =0 0) =— '(0) = —1.

(D) +15— +50 =0,  (0) =55, '(0)

The auxiliary equation is m? + 15m + 50 = 0 with solutions m = —5, —10. A general solution of

the differential equation is z(t) = Cre~5 4+ Cae 1. To satisfy the initial conditions, we must have

1 1 3
2—0—014-02, —1=-5C; —10C, — Cp = —— 2= oo

1
Thus, z(t) = 20 (3¢9 —2¢7") m.
(b) The mass passes through the equilibrium position if this function is ever equal to zero,

1 ~10 -5 1
%(36 t_ e t):O = et == = t:gln(3/2)s.

(¢) The mass is 1 cm above the equilibrium position when

1 _ _ 1
—(36 10t_2e 5t) — m

50 = !0 1 10e?* — 15 = 0.
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Solutions of this quadratic equation in e are

0.0s}*
—-10+ V1
e’ = 0 200+60:—5j:2\/10.
Since t must be positive, we take the positive root,
in which case t = (1/5)In (2v/10 — 5) s. 0.01}
\/05’f 1 t

. (a) The initial-value problem describing the position z(t) of the mass is

d*x dx 1
1)— +15— +50x =0 0)=— "(0) = -3.
(D) +15 +50c =0,  (0) =55, '(0)

The auxiliary equation is m? + 15m + 50 = 0 with solutions m = —5, —10. A general solution of
the differential equation is 2(t) = Cre=5 4+ Cae ™19, To satisfy the initial conditions, we must have
1 1 11
— =C1+C3, —-3=-5C;—10C = Cr=—=, Cy=—.

20 1+ Co, 1 2 1 5 2= 55

1
Thus, z(t) = 20 (11e7'% — 10e™%") m.
(b) The mass passes through the equilibrium position if this function is ever equal to zero,

se_ 11

L (11e™" —10e™) =0 =  €'= o

1
50 = t—gln(ll/lo) s.

(¢) The mass is 1 cm above the equilibrium position when

1
— (11e7%" — 10e™%") = = e'% +50e™ — 55 = 0.

20 ~ 100
Solutions of this quadratic equation in e°* are .
0.05
—50 £ /2500 + 220
e’ = 5 20 _ 95+ 92/170. 0ol
Since t must be positive, we take the positive root, 03 b
in which case t = (1/5)In (24/170 — 25) s. -0.05}
0.1}
The mass is 1 cm below the equilibrium position when
1 1
50 (1171 —10e™%") = 5 = e'% —50e” + 55 = 0.

5t

Solutions of this quadratic equation in e°* are

50 4+ /2500 — 220
et = =25+ /570

1
5 = t=:(@5xV50)s

. (a) The initial-value problem describing the position z(t) of the mass is

Pz dx 1 /
2o +A 42002 =0, a(0) = . 2/(0)=5.

The auxiliary equation is 2m? + 4m + 200 = 0 with solutions m = —1 +3+/114i. A general solution
of the differential equation is z(t) = e t[C cos (3v/11t) + Cysin3v/11¢)]. To satisfy the initial
conditions, we must have

1 1711
E = (1, 5——01+3\/ﬁ02 — Cy = 0
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Thus, #(t) = 1= {llcos(3\/_t)+17\/_15m(3\/_t)}

(b) Maximum distance from equilibrium is attained when velocity is equal to zero for the first
time,

=1'(t) = —1—10 [11 cos (3v/11t) + 17v/11sin (3\/—t)}

This equation implies that

110[ 33v/11 sin (3vV/11¢) + 561 cos (3v/11t)] .

1
550 cos (3V11t) = 50V/11sin (3V11t) = tan(3V11t) =V11 — t= Tan 'V11 +

10.

nm
311 311’

where n > 0 is an integer. We choose n = 0 for maximum distance, in which case
1
t= 3mTan_1\/ 11. When this is substituted into z(t), the result is x = 0.457 m or 45.7 cm.

(¢) The mass passes through the equilibrium position when

[11005(3\/_t)+17\/_51n(3\/_t)} —  tan(3V11t) = \/ﬁ

17
1 Tan~! —/11 n nmw ,
311 17 311

the first pass through the origin, ¢ =

0=a(t) = 110

Thus, t = where n > 1 is an integer. When we choose n = 1 for

—1 Tan~! —_\/ﬁ +—7T
3v11 17 3V11

(a) The initial-value problem describing the position z(t) of the mass is

~ 0.296 s.

d? d 1
WL 1 2% 4 4oz =0, 2(0) = 5.

/ _
a? "t z(0)=0.

The auxiliary equation is m? + 2m + 40 = 0 with solutions m = —1 4 v/39i. A general solution of
the differential equation is z(t) = e~ *(C} cos V39t + Cy sin v/39¢t). To satisfy the initial conditions,
we must have

1 V39
20 Ol, O—_Ol‘i‘\/@OQ — CQ——m
Thus, z(t) = —— |39 cos v/39t + v/39sin v/39t| m. We now set

780

_ﬁ(39005\/_t+\/_981n\/_t) Asin (V39t + ¢) = A(sin V/39t cos ¢ 4 cos V39t sin ¢).

This implies that

V39 39
A = —_— Asi — .
Cos$ =~ 750 sing = —755
Squaring and adding these gives
39 392 1 1
A2 = = — — A = —.
7802 + 7802 390 /390
Hence,
Vv39v390 . 39390
cosp = —————, sing = — .
780 780

1
One solution of these equations is ¢ = —1.73. Thus, z(t) = e sin (V39 — 1.73).

(b) The mass passes through the equilibrium position when
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1 1.73
O:x(t):msin(\/@t—l.m) —  V30t—173=nr =—> t:%,

where n > 0 is an integer. The distance between successive times is 7/v/39.

(a) The initial-value problem describing the position z(t) of the mass is
d? d
M—x—i-ﬂd—f—l—kx:(), z(0) = zg, 2'(0) = vp.

dt?
—BE£+/B2 —4kM
B B . Since the

motion is critically damped, 3% — 4kM = 0, and the auxiliary has equal roots m = —3/(2M). A
general solution of the differential equation is x(t) = (C; + Cyt)e P4/ CM) To satisfy the initial
conditions, we must have

The auxiliary equation is Mm?2 + fm + k = 0 with solutions m =

X
x():Cl, 'UOZCQ—W01 — CQZUO‘F%.
Thus, x(t) = [wo + (Uo + %) t} e Bt/2M) 1) The mass passes through the equilibrium position
when
5500) ] —pt/(2M) o
®) { 0 <O 2M vo + Bxo/(2M)

When zy and vy are both positive, or both are negative, this value is negative, an unacceptable
value.

(b) The equation defining ¢ in part (a) yields only one value; that is, there can be at most one
time at which the mass passes through equilibrium. There will be one when the equation yields a
positive value for ¢. This occurs when

Lo

"%t Bao) @)

When x¢ > 0, this requires

Bxo v B
— <0 = —+-—x<0.
Vg + Wi < 70 + Wi <
On the other hand when zy < 0, we must have
Bo v O
— >0 = —+-—<N0.
Vg + Wi > 70 + Wi <

(a) The initial-value problem describing the position z(t) of the mass is

d? d
MO ke =0, ) =m0, (0)=w.

dt?
—BE£+/B2 —4kM
B 2?\4 . Since the

motion is overdamped, 3% — 4kM > 0, and the auxiliary has real roots. Suppose we denote them

B VB ARM oy — NP — ARM
2M 2M '

equation is z(t) = Cre“t! + Cye®?!. To satisfy the initial conditions, we must have

The auxiliary equation is Mm?2 + fm + k = 0 with solutions m =

by wy = A general solution of the differential

wW2Zo — Yo Vo — W1Zo

2o =C1 4+ Co, wvg =wiCy +wa(Ch = Cq Cy =

w2 — W1 ’ W2 — W1

waZo — Vo vy — wW1Zo
r(t)= | Z———= et 4 | ——= ) e“2' m
W2 — w1 W2 — w1

Thus,
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The mass passes through the equilibrium position when

st = (A0 o (=)

W2 — w1 W2 — W1

This implies that

waZo
oV/B2—4kMt/M _ Yo
WiZo
1—
Yo

When xy and vy are both positive, or both are negative, the right side of this equation is between
0 and 1, an unacceptable value.

(b) The equation defining ¢ in part (a) yields only one value; that is, there can be at most one
time at which the mass passes through equilibrium. There will be one when the equation yields a
positive value for ¢. This occurs when

Wo X
1 wa%o
Vo
o b
1 —
Vo
If 1 — wimg /v > 0, this requires
Wo X w1T
1-— 20>1— 170 — wo < Wiy,
Vo Vo
a contradiction. Thus, we must have
wiT v + /B2 —4kM v
om0 g Wy — BV + = <o.
Vo i) 2M Zo

. If x measures displacement of the platform from its equilibrium position, then the differential
equation for the combined motion is

W+ w\ d?z dx
< g )W'f‘ﬁ%-f—kl'—o.

W+ w

The auxiliary equation is ( ) m?+fm+k=0 with solutions

o —B+ /B2 —4k(W +w)/g
2(W 4+ w)/g '

Oscillations occur for large w, and for small values of w no oscillations occur. The largest value of
w for no oscillations occurs when
B9

Ak(W
g MWHw) o 09 gy
g 4k

. (a) The initial-value problem describing the position x(t) of the mass is

d? d
MO 6% ke =0, )= w0, (0)=w.

e
B+ /B — 4kM
oM '

the motion is underdamped, 3% — 4kM < 0, and the auxiliary has equal roots m = (—f %+
VAEM — 3%2i)/(2M). A general solution of the differential equation is

The auxiliary equation is Mm? + fm + k = 0 with solutions m = Since
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_pt/(2M)
o(t) =e oM oM

The initial conditions determine values for C; and Cs, but we shall not need them. Any function
of this form can also be expressed in the form

z(t) = Ae” /M sin (@t + d)) :

2M

(b) The times at which the mass passes through equilibrium are defined by the equation

Ozw(t):Aeﬁt/(QM)Sm(iW—ﬂzw) . Sin(LM—ﬂQM):o

2M 2M

Hence,

VAkM — 32

2M

_ 2M(nm — ¢)
- J4kM — 32’

where n > 1 is an integer. The time interval between successive passes throught the origin is
2Mm

VARM — 32

(c) Times at which the velocity of the mass is equal to zero are given by

_ie-m/@M)Sm(iW—ﬁz ) wufM B s, (LW—%W)
2M

t+¢=nr ==

2M 2M

This simplifies to

—(sin <7“4k]\/[_62t + ¢> + v/4kM — (32 cos <7'4k]w_ﬁ2t + ¢> =0,

2M 2M

from which

2M I}

. («/41{M—52t+¢> _ AR =

Thus, times at which the velocity is zero are

2M \/4kM — (32
ty = ——— | Tan™* 76 +nr—¢|,
AkM — [32 B
where n > 1 is an integer. Depending on values for ¢ and the inverse tangent function, n might

start at a value other than 1. It makes no difference to the rest of our discussion. Suppose z,, are
the corresponding values for z(t). Consider the ratio

o=t/ QM)SIH(,/MM z, +¢> ,/4kM L +¢>

S (
ﬁ(tn+27tn)/(2M)

Tn
= =€ .
Int2 o Btaa/(2M) gip (7%’ tnta + ¢>) sin (7an+2 T ¢>
2M aM
Since ty 42 — th = ———=27) = d

VAkM — 32’
Bltnta—tn)/(2M) _ 2B7/\/4kM -3

VAKM — 32

Furthermore,
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VAKM = 32
sin <7ﬁtn+2 + ¢>> = sin

2M

o GRS P

Tanl<7”4k]\g_62> +nm

:m(zﬁﬁ;ﬁ%+@.

= sin

2M

Thus, — " = 25/ VAIRM=52,

Tn+2
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. The solution is the same to the time and position of the first stop of the mass. During the return
trip to the right, the initial-value problem defining the position of the mass is

d2
d—tf + 162 = —1%, 2(0.431082) = —0.191663, 2’(0.431082) = 0.
A general solution of this differential equation is
x(t) = C3cos4t + Cysindt — %
The initial conditions require
—0.191663 = C5 cos 4(0.431082) + C; sin 4(0.431082) — %,

0 = —4C5sin4(0.431082) 4 4Cy cos 4(0.431082).

The solution is C3 = 0.0199344 and Cy = —0.128817, so that

x(t) = 0.0199344 cos4t — 0.128817 sin4t — I

160
The mass comes to rest for the second time when
B 0.128817
0.0199344°
Thus, t = —(1/4)Tan™'(0.128817/0.0199344) + nn /4 = —0.354316 4 n7r/4. Since t must be larger

than 0.431082, we choose n = 2 in which case t = 1.216480. At this time, the position of the mass
is

0 = 2/(t) = —4(0.0199344) sin4t — 4(0.128817) cosdt = tan4t =

2(1.216480) = 0.0199344 cos 4(1.216480) — 0.128817 sin 4(1.216480) — % = 0.069038 m.

. (a) We should first check that the initial stretch in the spring is sufficient to overcome the force
of static friction on the mass so that motion does occur. Since the coeflicient of static friction is
twice that of kinetic friction, it follows that the minimum force that will cause motion is 1 N. At a
stretch of 6 cm, the spring force on the mass is 18(6/100) > 1. Thus, motion will occur. Since the
z-component of the force of friction when the mass is moving to the left is 1/2 N, the initial-value
problem describing the position z(t) of the mass from the time it starts until it comes to a stop
for the first time is

2

%%—i—l&r: % = 2 + 36z =1, x(0) = 0.06, 2'(0) = 0.

(b) The auxiliary equation is m? + 36 = 0 with solutions m = +6i, and therefore z(t) = C; cos 6t +
Cysin6t + 1/36. To satisfy the initial conditions, we must have 3/50 = C; + 1/36 and 0 = 6Cs.
Thus, x(t) = (29/900) cos6t + 1/36. Since v(t) = —(29/150) sin 6¢, the mass comes to rest for the
first time when 6t = 7, and at this time, its position is z = (29/900) cosm + 1/36 = —1/25

. (a) We should first check that the initial stretch in the spring is sufficient to overcome the force
of static friction on the mass so that motion does occur. Since the coefficient of static friction is
twice that of kinetic friction, it follows that the minimum force that will cause motion is 1 N. At a
stretch of 25 cm, the spring force on the mass is 18(1/4) > 1. Thus, motion will occur. Since the
z-component of the force of friction when the mass is moving to the left is 1/2 N, the initial-value
problem describing the position x(t) of the mass from the time it starts until to a stop for the first
time is
2
%%—i—l&r: % = 2" +36z=1, z(0) =0.25 2'(0) = 0.

(b) The auxiliary equation is m? + 36 = 0 with solutions m = +6i, and therefore z(t) = C; cos 6t +
Cysin6t 4+ 1/36. To satisfy the initial conditions, we must have 1/4 = C; 4+ 1/36 and 0 = 6C%.
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Thus, z(t) = (2/9) cos6t + 1/36. Since v(t) = (—4/3) sin6t, the mass comes to rest for the first
time when 6t = 7, and at this time, its position is = (2/9) cosm 4+ 1/36 = —7/36 m. The spring
force at this position has magnitude 18(7/36) = 7/2 N. Since the force of static friction is 1 N,
further motion will occur.

. The initial-value problem describing the position z(t) of the mass from the time it starts until it
comes to a stop for the first time is

1d? 1/1
Z 5 (_>g — == w0 =0, #(0)=

5a2 TP 1\

The auxiliary equation is m? + 25 = 0 with solutions m = +5i, and therefore x(t) = C} cos 5t +
Cy sin5t — ¢/100. To satisfy the initial conditions, we must have 0 = C; — ¢/100 and 1/2 = 5C5.
Thus, x(t) = (g/100) cos5t + (1/10) sin 5t — g/100. The mass comes to rest for the first time when

g . 1 10
0=2a'(t) = —=sin 5t + = cos 5t = tan bt = —.
=5 2 g

Solutions are t = (1/5)Tan"*(10/g) + nw/5 = 0.158998 + nx/5, where n is an integer. The first
positive solution is ¢ = 0.158998. The position of the mass at this time is

1
z = ~J— cos5(0.158998) + 15 5in5(0.158098) — 1%0 = 0.0419843 m.

100
The spring force at this position has magnitude 5(0.0419843) = 0.210 N. Since the maximum force
of static friction is (1/2)(1/5)g = 0.981, the mass will not move from this position.

. The initial-value problem describing the position z(t) of the mass from the time it starts until it
comes to a stop for the first time is

1d%z 1/1 " g ,
The auxiliary equation is m? + 25 = 0 with solutions m = +5i, and therefore x(t) = C} cos 5t +
Cysinbt — g/100. To satisfy the initial conditions, we must have 0 = C; — ¢/100 and 2 = 5Cs.
Thus, z(t) = (g/100) cos5t + (2/5) sin 5t — g/100. The mass comes to rest for the first time when

40
O=x’(t)=—%sin5t+20055t = tan bt = —.
)

Solutions are t = (1/5)Tan"*(40/g) + n7/5 = 0.266059 + nx/5, where n is an integer. The first
positive solution is ¢ = 0.266059. The position of the mass at this time is

2
v = I c0s5(0.266059) + = sin 5(0.266059) ~ 1%0 = 0.313754 m.

100
The spring force at this position has magnitude 5(0.313754) = 1.57 N. Since the maximum force
of static friction is (1/2)(1/5)g = 0.981, the mass will move from this position. The initial-value
problem describing the position z(t) of the mass until it comes to a stop for the second time is

il sr=2 = 2’ +2z=2, 2(0)=0.313754, 2/(0) =0,

5 di? 20 4
where we have re-initiated time as t = 0 at the start of this motion. A general solution of the
differential equation is z(t) = C} cosbt + Casin bt + ¢g/100. To satisfy the initial conditions, we
must have 0.313754 = Cy + ¢/100 and 0 = 5C5. Thus, x(t) = 0.215654 cos5t 4+ ¢g/100. The mass
comes to rest for the second time when

0=a'(t) = ~5(0.215654) sin5t = t=-.

The first positive solution is t = 7/5. The position of the mass at this time is
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2 = 0.215654 cos T + % — —0.117554 m.

The spring force at this position has magnitude 5(0.117554) = 0.588 N. Since this is less than the
maximum force of static friction, the mass will not move from this position.

. The initial-value problem describing the position z(t) of the mass relative to its equilibrium position
is
1 d%x
10 dt?
The auxiliary equation is m? + 40000 = 0 with solutions m = £200i. A general solution of the

associated homogeneous equation is zp,(t) = C7 cos 200t + C sin 200¢. Substituting a particular
solution of the form z, = A cos 100t + Bsin 100t into the differential equation gives

440002 = 3cos100t = 2’ +40000z = 30cos100f,  x(0) =0, 2'(0) = 10.

(—10000A cos 100t — 10 000B sin 100t) + 40 000( A cos 100¢ + 100B sin 100t) = 30 cos 100¢.

This implies that A = 1/1000 and B = 0, so that x(t) = C cos 200¢+C5 sin 200¢+(1,/1000) cos 100t.
The initial conditions require 0 = C7 +1/1000 and 10 = 200C5. Thus, x(t) = —(1/1000) cos 200t +
(1/20) sin200¢ 4+ (1/1000) cos 100t m. Because displacements are bounded, resonance does not
oceur.

. The initial-value problem describing the position z(¢) of the mass relative to its equilibrium position
is

1 d’z ,, ,

02 + 4000z = 3c0s200t = " 4 40000z = 30 cos 200¢, z(0) =0, z'(0) = 10.
The auxiliary equation is m? + 40000 = 0 with solutions m = £200i. A general solution of the
associated homogeneous equation is xp(t) = C1 cos 200t + Cqsin 200¢. Substituting a particular
solution of the form z, = At cos 200t + Bt sin 200¢ into the differential equation gives

(—400A sin 200t — 40 000 At cos 200t + 400B cos 200t — 40 000Bt sin 200t)
+ 40 000( At cos 200t + Bt sin 200t) = 30 cos 200¢.

This implies that A = 0 and B = 3/40, so that x(t) = Cy cos 200t + C5 sin 200t + (3¢/40) sin 200¢.
The initial conditions require 0 = C; and 10 = 200C3. Thus, «(t) = (1/20 + 3t/40) sin 200¢ m.
Because displacements are unbounded, resonance occurs.

. The initial-value problem describing the position of the mass relative to its equilibrium position is

d2
(1)% 464z = 2sin4t,  2(0) =0, '(0)=0.
The auxiliary equation is 0 = m? + 64 with solutions m = 48i. A general solution of the associated
homogeneous differential equation is zp,(¢t) = C; cos8t + Cysin8t. A particular solution is of the

form x,(t) = Asin4t + Bcos4t. When we substitute this into the differential equation, we obtain
(—16Asin4t — 16 B cos 4t) + 64(Asin 4t + B cos4t) = 2sin 4t.

This implies that A = 1/24 and B = 0. A general solution of the differential equation is therefore
x(t) = Cy cos 8t + Coysin 8t + (1/24) sindt. To satisfy the initial conditions, we must have 0 = C4
and 0 = 8Cy 4+ 1/6. Thus, z(t) = —(1/48) cos8t + (1/24)sin4t m. For large ¢, oscillations are
bounded so resonance does not occur.

. The initial-value problem describing the position of the mass relative to its equilibrium position is

d2
(1)% 464z =2sin8t,  2(0)=0, '(0)=0.
The auxiliary equation is 0 = m? + 64 with solutions m = 48i. A general solution of the associated
homogeneous differential equation is zp,(t) = C; cos8t + Cysin8t. A particular solution is of the

form x,(t) = At sin 8¢+ Bt cos 8t. When we substitute this into the differential equation, we obtain
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= (—64 At sin 8t16 A cos 8t — 64 Bt cos 8t — 16 B sin 8t) + 64( At sin 8¢ + Bt cos8t) = 2 sin 8¢.
When we equate coefficents of sin 8¢ and cos 8t, we get
—16B =2, 164 = 0.

Thus, z,(t) = —(t/8) cos8t, and z(t) = Cj cos8t + Cosin8t — (t/8) cos8t. To satisfy the initial
conditions, we must have 0 = C; and 0 = 8C2 — 1/8. Hence, z(t) = (1/64)sin8t — (¢/8) cos 8¢ m.
For large t, oscillations are unbounded and resonance occurs.

2

d
The differential equation describing the position of the mass is M Wf + kx = Acoswt. Solutions

of the auxiliary equation Mm? + k = 0 are m = ++/k/Mi. Hence, a general solution of the
associated homogeneous equation is x(t) = Cjcos\/k/Mt + Cysin/k/Mt. Resonance occurs
when \/k/M = w.

The initial-value problem describing the position z(t) of the mass relative to its equilibrium position
is

1d?z 3dx
R + JRE—
5dit2 2 dt
The auxiliary equation is 2m? + 15m + 100 = 0 with solutions m = (=15 £ 5v/23i)/4. A general
solution of the associated homogeneous equation is

523t , 5\/ﬁt>
=

+ 10z = 4sin10t = 22" + 152’ + 1002 = 40sin 10¢, z(0) =0, 2'(0)=0.

xp(t) = e 1ot/4 (Cl cos + Cy sin

A particular solution of the differential equation is of the form z,(¢) = Asin 10t + B cos 10t. When
we substitute this into the differential equation, we obtain

2(—100Asin 10t — 100B cos 10t) + 15(10A cos 10t — 10B sin 10t)
+ 100(A sin 10t + B cos 10t) = 40 sin 10¢.

When we equate coefficients of sin 10¢ and cos 10¢, we get
—200A — 150B + 100A = 40, —200B + 150A + 100B = 0.

The solution is A = —8/65 and B = —12/65. Hence, a general solution of the differential equation
is z(t) = e~ 14[Cy cos (5v/23t/4) + Co sin (5v/23t/4)] — (4/65)(3 cos 10t + 2sin 10t). To satisfy the
initial conditions, we must have 0 = C; — 12/65 and 0 = —15C;/4 + 5v/23C5/4 — 16/13. These
imply that C; = 12/65 and Cy = 20/(13+/23), and therefore

x(t) = e 194/4 12 cos 5v231 + 20 sin 5v/23¢ _4
65 4 13+/23 4 65

(3cos 10t + 2sin 10¢) m.

(a) The initial-value problem describing the position z(t) of the mass relative to its equilibrium
position is

d? d

Wf + 2d—f 100z = 2sinwt,  2(0) =0, a/(0)=0.
The auxiliary equation is m? 4+ 2m + 100 = 0 with solutions m = —143+/11i. A general solution of
the associated homogeneous equation is x(t) = e " (Cl cos 3V 11t 4+ Cs sin 3V 11t). A particular

solution of the differential equation is of the form z,(t) = Asinwt + B coswt. When we substitute
this into the differential equation, we obtain

(—w?Asinwt — w?Bcoswt) + 2(wA coswt — wB sinwt)

+ 100(Asinwt + Bcoswt) = 2sinwt.
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When we equate coefficients of sinwt and coswt, we get

—w?A — 2wB + 1004 = 2, —w?B 4 2wA + 100B = 0.
The solution is A = 2(100 — w?)/[(100 — w?)? + 4w?] and B = —4w/[(100 — w?)? + 4w?]. Hence, a
general solution of the differential equation is

1

(100 — w2)? + 4w? [2(100 — w?) sinwt — 4w cos wt].

a(t)=e" (Cl cos 3V/11t + Cy sin 3\/ﬁt) +

To satisfy the initial conditions, we must have

dw 2w (100 — w?)
0=0Cp — 0=—Cy +3V1IC .
PT100 — w?)? + 4w?’ 1+ 3VIIC, + (100 — w?)? + 4w?
These imply that
o — 4w o — 2 w(w? — 98)
'T(100 — w?)? + 4w?’ 27 3VAT (100 — w?)? + 4w?

The position of the mass is therefore

_ 4w 2v1w(w? —98) |
t)y=e" 3V11t 3V11t
2(t) =e { (100 — w?)? + 402 ° % T 33100 —w?)? + 4o

1
+ (100 — w2)2 T+ 402 [2(100 - Wz) sin wt — 4w cos(,gt]
! 2v11 2 _98

+ [2(100 — w?) sin wt — 4w cos wt]} m.

(b) Resonance occurs when the amplitude of the steady-state part of the solution, namely,

1

zp(t) = 10077 14 2[2(100—u}2) sinwt — 4w cos wt],
—w w

is a maximum. The amplitude is

1
A= (100 — w?)2 + 4w? VA(100 — w?)? 4+ 40? =

2
V(100 — w?)2 + 40?2

This is a maximum when the derivative of (100 — w?)? + 4w? vanishes,
0=2(100 — w?)(-2w) + 8w =  w=TV2

Maximum amplitude is

2 V11
m

/(100 —98)2 +4(98) 33

(a) Substituting a particular solution of the form z,(t) = B coswt + Csinwt into the differential
equation gives

M(—w?B coswt — w?C'sinwt) + f(—wB sinwt + wC coswt) + k(B coswt + C'sinwt) = A coswt.
When we equate coefficients of coswt and sin wt, we obtain

(k — Mw?)B + wC = A, —BwB + (k — Mw?)C = 0.
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. . A(k — Mw?) ApBw .
The solution of these is B = b= Mo 1 Pal’ C = = Mo 2 1 Pur The particular so-

lution is therefore

A
zp(t) = (k — Mw?)2 + 20?2 [(

k — Mw?) coswt + Bwsin wt].

(b) If we set (k — Mw?)coswt + fwsinwt = Rsin (wt + ¢) = R(sinwt cos ¢ + coswt sin ¢), and
equate coefficients of sinwt and coswt,

k— Mw? = Rsing, [w = Rcos .

These imply that R? = (k— Mw?)? + 32w?. The amplitude of the steady-state part of the solution
is therefore
A
(k — Mw?)? + f2w?

A
\/(k: _ Mw2)2 ¥ 62w2'

\/(k: _ Mw2)2 + w2 =

It is a maximum when (k — Mw?)? + 3%w? is smallest. To determine the value of w that yields the
minimum, we solve

0 =2(k — Mw?)(—2Mw) + 207w = 2w[-2M (k — Mw?) + %],

The nonzero solution is w = \/k/M — 32/(2M?). The amplitude at this value of w is
A 2AM

ENE Ko\ BVARM =57
E-M(Z — N + (L P~
M 2M? M 2M?
a) Suppose y measures the distance the mass moves after striking the platform. Then Newton’s
Y g
second law applied to the motion of the mass gives

d*y dy
20— = —1000y — 10— + 20g.
dt? v 0% T
When we divide by 10 and attach initial displacement and velocity, we obtain the initial-value
problem

d*y dy

2— + =+ 100y =2 0)=0 "(0) = 2.

Tz g 00y =29, y(0)=0, ¥(0)
The auxiliary equation 2m? +m+ 100 = 0 has roots m = (—14+/799i)/4. Consequently, a general
solution of the differential equation is

V799t V799t
y(t) = e /4 [ C cos + Cysin + 9.
4 4 50
The initial conditions require
C 799C
0=y(0) = Cr+ 5, 2=y/(0) = -+ X2

These imply that C; = —g/50 and Cs = (400 — ¢)/(50+/799), and therefore

ey V9 <400 - g> o V799t g
50v/799 4

50 4
(b) The maximum displacement experienced by the mass occurs when the mass comes to an
instantaneous stop for the first time. We therefore set

50"
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dy _ 1 l_i oo VTP (400—g> . \/799t]

a4 50 “° T4 507700 ) T T 4
—t/4 V799g . V799t /799 (400 — g) V799t
+e sin + cos .
200 4 4 504799 4

This equation implies that

4 2 4
t = ——Tan * = —0.9883 + n),
V799 400—g V799 \/799( )

200v799 200

where n is an integer. The smallest positive solution occurs for n = 1, and for this value of n,
t =0.3047 s. The displacement of the mass at this time is (0.3047) = 0.51 m.

Suppose the mass of the chain is M so that its mass

per unit length is M/a. When the length of chain Tr=0

hanging from the edge of the table is y, then l
y _ Mgy y
dt? a

This differential equation is subject to the initial
conditions y(0) = b and 3’(0) = 0, provided ¢ = 0 is taken at the instant motion begins. The
differential equation is linear with auxiliary equation m? — g/a = 0 = m = £./g/a. A general

solution is therefore y(t) = C1eV9/® 4 Cye™V9/9t, The initial conditions require
_ _ /9 g -
b=C1+ Oy, 0—\/501—\/502 — Ol—OQ—b/2.
b
Thus, y(t) = 5(6 g/at 4 ¢=V9/9%) The chain slides off the table when y = a in which case
b Jat —+/g/at 2+/g/at 2a Jat

a:§(eg +e VI — eV —?eg +1=0.

This is a quadratic in eV9/* with solutions

2/h2 _ 2 _}2
aTat _ 2a/bj:«/;la P=i_1.. Jom :>t:\/§1n <aj:\/a b )
9

1
b b

It is straightforward to verify that (a — va? — b2?)/b < 1 in which case ¢ would be negative, an

unacceptable value. Hence, t = gln Lﬁ).
(a) Suppose the mass of the chain is M so that its mass
per unit length is M/a. When the length of chain
hanging from the edge of the table is b, the force Tr=0
of gravity on this much chain must be larger than
the force of friction on that part of the chain still
on the table,

(55 ) o> |2

Thus, the smallest amount of hanging chain is b = ps(a — b).
(b) When the length of chain hanging from the edge of the table is y, then

At ol
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dy Mgy Mg dy g
adk Ap B YG—y) = ZZ-In = — g
12 a a (CL y) 12 (l( +:uk)y Hkg

This differential equation is subject to the initial conditions y(0) = b and 3’'(0) = 0, provided
t = 0 is taken at the instant motion begins. The differential equation is linear with auxiliary
equation m? — (g/a)(1 + ux) = 0 = m = £/g(1 + pux)/a. A general solution is therefore

y(t) = CreVIltm/at 1 Cye=Valtm)/at gy, /(1 4 ). The initial conditions require

1 1 1
b=Cy+Cy+ 2 o_\/ig( +“’“)cl—\/7g( e, 01—02_—<b— af >
L+ g a a 2 1+ 1y

Thus, y(t) = 1 <b — ﬂ) (eV9Utur)/at o o=/ g(+uk)/aty | %k The chain slides off the
2 1+ pg 1+ pp
table when y = a,

1
a= - <b— ﬂ) (6\/9(1+uk)/at + e—\/g(1+ﬂk)/at) + ﬂ,
2 1+ pg 1+ pg

which can be expressed in the form

2v/a T jat _ 2a No(Fmjat | _q
b(1 + p) — apk

This is a quadratic in eV9(H#E)/at with solutions

2a n 4a? Al + /a2 — [b(1 + px) — ape)?
— aju]?

eV 9(+uk)/at _ 1

2 | b(1 4 pr) — ap [b(1 + ) b(1 + ) — ap,
and
‘ a I a+/a® —[b(1 + px) — apk]?
g(1+ i) (L + pk) — apu, '

It can be shown that the negative root leads to a value ¢ < 0. Hence,

t= a 1n{a+\/a2—[b(1+uk)—auk]2}.

g(1+ ux) b(1 + pur) — apu

17. Let us use the coordinate system of Figure 5.5 to measure the displacement of the mass. If s is the
stretch in the spring at equilibrium, then when the mass is at position z, the stretch is s —z + f(#).
Newton’s second law for the motion gives

1d%x de g
—— =—-10— — = +250[s — t)].
2 dr? ai g PO e 0
At equilibrium, —g/2 4 250s =, so that
1 d*x dx d*z dx .
S = —1OE +250[—x + f(t)] = Tz + 2OE + 500z = 50sin 2t,
subject to x(0) = 2/(0) = 0. The auxiliary equation is m? + 20m + 500 = 0 with solutions
m = —10+ 5v6i. A general solution of the associated homogeneous equation is therefore z,(t) =

e~ 19(C cos 5v/6t + O 5in 5v/6t). When we substitute a particular solution of the form z,(t) =
Assin 2t + B cos 2t into the differential equation, we obtain

(—4Asin 2t — 4B cos 2t) 4+ 20(2A cos 2t — 2B sin 2t) 4+ 500( A sin 2t + B cos 2t) = 50 sin 2t.
Equating coeffcients to zero gives

496A — 40B = 50, 40A+ 496B = 0,
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the solution of which is A = 1550/15,446 and B = —125/15446. A general solution of the
nonhomogeneous differential equation is
1550 125
I(t) = eflOt(Ol COS 5\/6t —+ OQ Sin 5\/6t) —+ m Sin 2t — m COS 2t
The initial conditions require
125 1550
0=2(0)=C1 — —— 0=2'(0) = —10C; + 5vV6C:
w0 =G~ g 7 () 1+ 5V6C: + o

These give Cy = 370/(15446+/6). Thus, the position of the mass is given by

1550 . 125
s1n5\/_t> 15446 2t—mcos2t.

X

—10¢ (125

z(t) =e (1544660S5\/_t+1 1465
A plot of this function is shown to the right.

The damping is so severe that the transient
terms disappear almost immediately. The steady-
state terms of the particular solution persist 1 5 3 7 >
forever. The mass oscillates at the same frequency \
as the motion of the upper support, but with a
slightly smaller amplitude, and out of phase with it. -0.1¢

0.1%

The initial-value problem describing the position z(t) of the mass from the time it starts until it
comes to a stop for the first time is

d2
MW—Fkx——,uMg, x(0) = 2o, 2'(0) = vo.

The auxiliary equation is Mm? + k = 0 with solutions m = +./k/Mi, and therefore x(t) =
Cy cos\/k/Mt + Cysin/k/Mt — uMg/k. To satisfy the initial conditions, we must have zo =

Cy — uMg/k and vy = \/k/MC5. Thus,

(t)* _|_M_]Wg Uit—l—U% i Uit
T = | To A COS i kvosm ia

The mass comes to a stop for the first time when

k uMg\ . k k
— ! — J— - R —_—
0=2a'(t) = —1/ (:co—l— A >s1n\/Mt+vocosy/Mt.

We can rewrite this equation in the form

van ] Fy o — ¢ M
11 —1 = o _
V31" = /R (e + g R) V5

where n is an integer. For the smallest positive solution we choose n = 0.

)

xo +pMg/k

T<7M/k> -

The initial-value problem describing the position z(t) of the mass from the time it starts until it
comes to a stop for the first time is
d2
Md2 +kx =puMg, z(0) = 2o, 2'(0) = vy,
where vy < 0. The auxiliary equation is Mm? +k = 0 with solutions m = 4/k/Mi, and therefore
x(t) = Cycos\/k/Mt+ Cysin\/k/Mt + uMg/k. To satisfy the initial conditions, we must have
xo = C1 + pMg/k and vg = \/k/MC5. Thus,

= (2= "M cos o/ ot 4 [ Mg siny [ 2
:c(t)_<x0 . >cos Mt—l— Vo sin Mt.
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The mass comes to a stop for the first time when

k uMg\ . k k
N —_—— . JE— e
0=2'(t) = (xo - >s1n\/Mt+vocosy/Mt.

Except when xg = uMg/k, we can rewrite this equation in the form

tan {/ s 10 = ¢ W/M Tan—t( LoV M/E
ny/ —t= =14/ — n | ———— nmw
M- \/k/M(xo — uMg/k) k

xg — uMg/k
where n is an integer. For the smallest positive solution, we obtain

M. o wvo/MJE
\/—Tan ' ——1— h Mg/k
o Tan <x0—uMg/k>’ when g < uMg/

M 7
k2’

/ M/k
% Tan_l<u> +

zo — uMg/k
20. If y > 0 is the depth of the bottom surface of the cube, then Newton’s second law from time ¢ = 0
when the cube is released until it is completely submerged gives

)

when zg = uMg/k

, when g > uMg/k.

& d 2y d
Ef — 1200 — 2d—2 _y(1)2(1000)g < —  6002Y 4+

1200
dt?  dt

4+ 500gy = 600g,

subject to y(0) = 0 and y'(0) = 0. The auxiliary equation is

—14++1-1200000 —1+ 1199999
1200 B 1200 '

If we set w = +/1199999/1200, then a general solution of the differential equation is

600m? + m + 5009 = 0 with solution m =

6
y(t) = e_t/lzoo(Cl coswt + Co sinwt) + =

The initial conditions require
6 C

These give C; = —6/5 and Cy = —1/(1000w), and therefore
6 eft/IQOO
) e a——

v =5~ Too0w

This is valid as long as y < 1. When y =1,

(1200w cos wt + sinwt).

6  e—t/1200

1= E m(l?OOwcoswt + sinwt),

the numerical solution of which is t = 1.54 s.
A plot of y(t) for 0 <t < 1.54 is shown Ik
to the right.

0.5+

i 7
21. If y > 0 is the depth of the bottom surface of the cube, then Newton’s second law from time ¢ = 0
when the cube is released gives
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d*y dy > Py | dy
500—= = 5009 — 2— — »(1)2(1000 = 250—= + — + 500gy = 250
e 9 = 2— —y(1)°(1000)g oz + g T500gy g,
subject to y(0) = 0 and y’(0) = 0. The auxiliary equation is
~14/T-500000 —1++/499999i
500 N 500 '

If we set w = /499 999/500, then a general solution of the differential equation is

250m? +m + 500g = 0 with solution m =

1
y(t) = e_t/500(01 coswt + Cy sinwt) + 3
The initial conditions require

1 C
0=y0)=C1+=, 0=y(0)=——= +wCh.

2 500
These give C; = —1/2 and Cy = —1/(1000w), and therefore
1 e—t/500
y(t) = 3 m(SOOw coswt + sinwt).
A plot of this function is shown l,y

to the right.

12F

20 t

(a) If x is the length of the longer piece of cable, then Newton’s second law for acceleration of the

cable is
2

d°z
25pW = 9.81pz,

where p is the mass per unit length of the cable,

and z is as shown in the figure to 0
—_ X=

the right. Since z + (z — z) = 25, it follows
that z = 2z — 25 and
d*x
255 = 9.81(2z — 25), T x
or, z
2
259" 19,620 = —245.25. l
dt?

The auxiliary equation 25m? — 19.62 = 0 has roots 4-/19.62/25. If we denote the positive
by root m, then z(t) = C1e™ + Coe™ ™! 4 245.25/19.62. The initial conditions z(0) = 15
and z'(0) = 0 require 15 = Cy + C2 + 245.25/19.62 and 0 = mC; — mCy. These imply that
C1 = Cy = 1.25. The cable slides off the peg when 25 = 1.25(e™ + ¢~ ™) 4 245.25/19.62 and
the solution of this equation is 2.59 s.

(b) In this case Newton’s second is

2z dx
25PW =9.81pz—981lp — 25W —19.62x = —255.06.

The solution of this differential equation is x(t) = C1e™ + Coe™ ™! + 255.06/19.62, where m is as
in part (a). The initial conditions require 15 = Cy + Cs 4+ 255.06/19.62 and 0 = mC; — mCs, and
these gives C; = Cy = 1. The cable slides off the peg when 25 = ™ + e~ + 255.06/19.62 and
the solution of this equation is 2.80 s.



