CHAPTER 5

EXERCISES 5.1

1. With the coordinate system of Figure 5.5, the initial-value problem describing the position $x(t)$ of the mass is

$$
\text { (1) } \frac{d^{2} x}{d t^{2}}+16 x=0, \quad x(0)=-1 / 10, \quad x^{\prime}(0)=0
$$

The auxiliary equation is $m^{2}+16=0$ with solutions $m= \pm 4 i$. A general solution of the differential equation is $x(t)=C_{1} \cos 4 t+C_{2} \sin 4 t$. To satisfy the initial conditions, we must have $-1 / 10=C_{1}$ and $0=4 C_{2}$. Thus, $x(t)=-(1 / 10) \cos 4 t \mathrm{~m}$.
2. With the coordinate system of Figure 5.3, the initial-value problem describing the position $x(t)$ of the mass is

$$
\frac{1}{10} \frac{d^{2} x}{d t^{2}}+100 x=0, \quad x(0)=\frac{1}{20}, \quad x^{\prime}(0)=0
$$

The auxiliary equation is $m^{2}+1000=0$ with solutions $m= \pm 10 \sqrt{10} i$. A general solution of the differential equation is $x(t)=C_{1} \cos 10 \sqrt{10} t+C_{2} \sin 10 \sqrt{10} t$. To satisfy the initial conditions, we must have $1 / 20=C_{1}$ and $0=10 \sqrt{10} C_{2}$. Thus, $x(t)=(1 / 20) \cos 10 \sqrt{10} t \mathrm{~m}$. A graph of this function is shown to the right. The amplitude of the oscillations is 5 cm , the period is $2 \pi /(10 \sqrt{10})=\sqrt{10} \pi / 50 \mathrm{~s}$, and the frequency is $50 /(\sqrt{10} \pi)=5 \sqrt{10} / \pi \mathrm{Hz}$.

3. With the coordinate system of Figure 5.3, the initial-value problem describing the position $x(t)$ of the mass is

$$
\frac{1}{10} \frac{d^{2} x}{d t^{2}}+100 x=0, \quad x(0)=0, \quad x^{\prime}(0)=-3
$$

The auxiliary equation is $m^{2}+1000=0$ with solutions $m= \pm 10 \sqrt{10} i$. A general solution of the differential equation is $x(t)=C_{1} \cos 10 \sqrt{10} t+C_{2} \sin 10 \sqrt{10} t$. To satisfy the initial conditions, we must have $0=C_{1}$ and $-3=10 \sqrt{10} C_{2}$. Thus, $x(t)=(-3 \sqrt{10} / 100) \sin 10 \sqrt{10} t \mathrm{~m}$. A graph of this function is shown to the right. The amplitude of the oscillations is $3 \sqrt{10} / 100 \mathrm{~m}$, the period is $2 \pi /(10 \sqrt{10})=\sqrt{10} \pi / 50 \mathrm{~s}$, and the frequency is $50 /(\sqrt{10} \pi)=5 \sqrt{10} / \pi \mathrm{Hz}$.

4. With the coordinate system of Figure 5.3, the initial-value problem describing the position $x(t)$ of the mass is

$$
\frac{1}{10} \frac{d^{2} x}{d t^{2}}+100 x=0, \quad x(0)=\frac{1}{20}, \quad x^{\prime}(0)=-3
$$

The auxiliary equation is $m^{2}+1000=0$ with solutions $m= \pm 10 \sqrt{10} i$. A general solution of the differential equation is $x(t)=C_{1} \cos 10 \sqrt{10} t+C_{2} \sin 10 \sqrt{10} t$. To satisfy the initial conditions, we must have $1 / 20=C_{1}$ and $-3=10 \sqrt{10} C_{2}$. Thus,
$x(t)=\frac{1}{20} \cos 10 \sqrt{10} t-\frac{3 \sqrt{10}}{100} \sin 10 \sqrt{10} t \mathrm{~m}$.
A graph of this function is shown to the
right. The amplitude of the oscillations is

$$
\sqrt{\left(\frac{1}{20}\right)^{2}+\left(\frac{-3 \sqrt{10}}{100}\right)^{2}}=\frac{\sqrt{115}}{100} \mathrm{~m}
$$

The period is $2 \pi /(10 \sqrt{10})=\sqrt{10} \pi / 50 \mathrm{~s}$, and
 the frequency is $50 /(\sqrt{10} \pi)=5 \sqrt{10} / \pi \mathrm{Hz}$.
5. With the coordinate system of Figure 5.3, the initial-value problem describing the position $x(t)$ of the mass is

$$
\frac{1}{10} \frac{d^{2} x}{d t^{2}}+100 x=0, \quad x(0)=-\frac{1}{20}, \quad x^{\prime}(0)=-3
$$

The auxiliary equation is $m^{2}+1000=0$ with solutions $m= \pm 10 \sqrt{10} i$. A general solution of the differential equation is $x(t)=C_{1} \cos 10 \sqrt{10} t+C_{2} \sin 10 \sqrt{10} t$. To satisfy the initial conditions, we must have $-1 / 20=C_{1}$ and $-3=10 \sqrt{10} C_{2}$. Thus,
$x(t)=-\frac{1}{20} \cos 10 \sqrt{10} t-\frac{3 \sqrt{10}}{100} \sin 10 \sqrt{10} t \mathrm{~m}$.
A graph of this function is shown to the right. The amplitude of the oscillations is

$$
\sqrt{\left(\frac{-1}{20}\right)^{2}+\left(\frac{-3 \sqrt{10}}{100}\right)^{2}}=\frac{\sqrt{115}}{100} \mathrm{~m}
$$

The period is $2 \pi /(10 \sqrt{10})=\sqrt{10} \pi / 50 \mathrm{~s}$, and
 the frequency is $50 /(\sqrt{10} \pi)=5 \sqrt{10} / \pi \mathrm{Hz}$.
6. (a) With the coordinate system of Figure 5.5, the initial-value problem describing the position $x(t)$ of the mass is

$$
2 \frac{d^{2} x}{d t^{2}}+1000 x=0, \quad x(0)=-\frac{3}{100}, \quad x^{\prime}(0)=-2
$$

The auxiliary equation is $2 m^{2}+1000=0$ with solutions $m= \pm 10 \sqrt{5} i$. A general solution of the differential equation is $x(t)=C_{1} \cos 10 \sqrt{5} t+C_{2} \sin 10 \sqrt{5} t$. To satisfy the initial conditions, we must have $-3 / 100=C_{1}$ and $-2=10 \sqrt{5} C_{2}$. Thus,

$$
x(t)=-\frac{3}{100} \cos 10 \sqrt{5} t-\frac{\sqrt{5}}{25} \sin 10 \sqrt{5} t \mathrm{~m}
$$

A graph of this function is shown to the right. The amplitude of the oscillations is

$$
\sqrt{\left(\frac{-3}{100}\right)^{2}+\left(\frac{-\sqrt{5}}{25}\right)^{2}}=\frac{\sqrt{89}}{100} \mathrm{~m}
$$

The period is $2 \pi /(10 \sqrt{5})=\sqrt{5} \pi / 25 \mathrm{~s}$, and

the frequency is $25 /(\sqrt{5} \pi)=5 \sqrt{5} / \pi \mathrm{Hz}$.
(b) The initial conditions affect the amplitude, but not the period or frequency.
7. With a mass of 8 kg , the initial-value problem for displacements is

$$
8 \frac{d^{2} x}{d t^{2}}+1000 x=0, \quad x(0)=-\frac{3}{100}, \quad x^{\prime}(0)=-2
$$

The auxiliary equation is $8 m^{2}+1000=0$ with solutions $m= \pm 5 \sqrt{5} i$. A general solution of the differential equation is $x(t)=C_{1} \cos 5 \sqrt{5} t+C_{2} \sin 5 \sqrt{5} t$. The period is $2 \pi /(5 \sqrt{5})=2 \sqrt{5} \pi / 25 \mathrm{~s}$, double that when the mass was 2 kg . The frequency will be half its previous value.
8. With a spring constant of $4000 \mathrm{~N} / \mathrm{m}$, the initial-value problem for displacements is

$$
2 \frac{d^{2} x}{d t^{2}}+4000 x=0, \quad x(0)=-\frac{3}{100}, \quad x^{\prime}(0)=-2 .
$$

The auxiliary equation is $2 m^{2}+4000=0$ with solutions $m= \pm 20 \sqrt{5} i$. A general solution of the differential equation is $x(t)=C_{1} \cos 20 \sqrt{5} t+C_{2} \sin 20 \sqrt{5} t$. The period is $2 \pi /(20 \sqrt{5})=\sqrt{5} \pi / 50$ s , half that when the spring constant was $1000 \mathrm{~N} / \mathrm{m}$. The frequency will be double its previous value.
9. With the coordinate system of Figure 5.5, the differential equation describing the position $x(t)$ of the mass is

$$
2 \frac{d^{2} x}{d t^{2}}+k x=0
$$

The auxiliary equation is $2 m^{2}+k=0$ with solutions $m= \pm \sqrt{k / 2} i$. A general solution of the differential equation is $x(t)=C_{1} \cos \sqrt{k / 2} t+C_{2} \sin \sqrt{k / 2} t$. The period of the oscillations is $2 \pi / \sqrt{k / 2}$ and therefore the frequency is $\sqrt{k / 2} /(2 \pi) \mathrm{Hz}$. Since this must be 3 , we set $\sqrt{k / 2} /(2 \pi)=$ 3 , from which $k=72 \pi^{2} \mathrm{~N} / \mathrm{m}$.
10. With the coordinate system of Figure 5.5, the initial-value problem describing the position $x(t)$ of the mass is

$$
M \frac{d^{2} x}{d t^{2}}+k x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=v_{0} .
$$

The auxiliary equation is $M m^{2}+k=0$ with solutions $m= \pm \sqrt{k / M} i$. A general solution of the differential equation is $x(t)=C_{1} \cos \sqrt{k / M} t+C_{2} \sin \sqrt{k / M} t$. To satisfy the initial conditions, we must have $x_{0}=x(0)=C_{1}$ and $v_{0}=x^{\prime}(0)=\sqrt{k / M} C_{2}$. Thus,

$$
x(t)=x_{0} \cos \sqrt{\frac{k}{M}} t+\sqrt{\frac{M}{k}} v_{0} \sin \sqrt{\frac{k}{M}} t .
$$

If we set this equal to $A \sin (\sqrt{k / M} t+\phi)$, then

$$
x_{0} \cos \sqrt{\frac{k}{M}} t+\sqrt{\frac{M}{k}} v_{0} \sin \sqrt{\frac{k}{M}} t=A\left(\sin \sqrt{\frac{k}{M}} t \cos \phi+\cos \sqrt{\frac{k}{M}} t \sin \phi\right) .
$$

This implies that

$$
x_{0}=A \sin \phi, \quad \sqrt{\frac{M}{k}} v_{0}=A \cos \phi
$$

When these are squared and added,

$$
A^{2}=x_{0}^{2}+\frac{M v_{0}^{2}}{k} \quad \Longrightarrow \quad A=\sqrt{x_{0}^{2}+\frac{M v_{0}^{2}}{k}} .
$$

It then follows that

$$
\sin \phi=\frac{x_{0}}{A}, \quad \cos \phi=\frac{\sqrt{M / k} v_{0}}{A} .
$$

11. The period of the oscillations in Exercise 10 is $2 \pi / \sqrt{k / M}=2 \pi \sqrt{M / k}$. This formula makes it clear that when M is doubled, the period is increased by a factor of $\sqrt{2}$. It follows that the frequency must be decreased by the same factor.
12. (a) When damping is ignored, the differential equation describing displacements of a mass is

$$
M \frac{d^{2} x}{d t^{2}}+k x=0 .
$$

Since velocity is a maximum when acceleration is zero, it follows that velocity is a maximum when $x=0$; that is, the mass passes through the equilibrium position.
(b) Maximum acceleration occurs when $d^{3} x / d t^{3}=0$, and the differential equation implies that this occurs when $d x / d t=0$; that is, when the velocity of the mass is zero. This occurs when the mass is at its maximum distance from equilibrium.
13. If we use differential equation 5.5 to describe oscillations of the mass, there is no difference in the analysis.
14. (a) With the coordinate system of Figure 5.5 , the initial-value problem describing the position $x(t)$ of the mass is

$$
\frac{1}{10} \frac{d^{2} x}{d t^{2}}+40 x=0, \quad x(0)=-\frac{1}{50}, \quad x^{\prime}(0)=10
$$

The auxiliary equation is $m^{2}+400=0$ with solutions $m= \pm 20 i$. A general solution of the differential equation is $x(t)=C_{1} \cos 20 t+C_{2} \sin 20 t$. To satisfy the initial conditions, we must have $-1 / 50=C_{1}$ and $10=20 C_{2}$. Thus,

$$
x(t)=-\frac{1}{50} \cos 20 t+\frac{1}{2} \sin 20 t \mathrm{~m}
$$

(b) To simplify the remaining parts of the exercise we express $x(t)$ in the form

$$
-\frac{1}{50} \cos 20 t+\frac{1}{2} \sin 20 t=A \sin (20 t+\phi)=A(\sin 20 t \cos \phi+\cos 20 t \sin \phi)
$$

These imply that

$$
-\frac{1}{50}=A \sin \phi, \quad \frac{1}{2}=A \cos \phi
$$

When these are squared and added,

$$
A^{2}=\left(\frac{-1}{50}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{626}{2500} \quad \Longrightarrow \quad A=\frac{\sqrt{626}}{50}
$$

With this value for A,

$$
\sin \phi=-\frac{1}{\sqrt{626}}, \quad \cos \phi=\frac{25}{\sqrt{626}}
$$

One of many expressions for ϕ is $\phi=-\operatorname{Sin}^{-1}(1 / \sqrt{626})$. Thus,

$$
x(t)=\frac{\sqrt{626}}{50} \sin (20 t-\theta), \quad \text { where } \theta=\operatorname{Sin}^{-1}\left(\frac{1}{\sqrt{626}}\right)
$$

The amplitude of the motion is $\sqrt{626} / 50 \mathrm{~m}$, the period is $\pi / 10 \mathrm{~s}$ and the frequency is $10 / \pi \mathrm{H}$.
(c) The velocity of the mass is zero when

$$
0=x^{\prime}(t)=\frac{20 \sqrt{626}}{50} \cos (20 t-\theta) \quad \Longrightarrow \quad 20 t-\theta=\frac{(2 n+1) \pi}{2} \quad \Longrightarrow \quad t=\frac{(2 n+1) \pi}{40}+\frac{\theta}{20}
$$

where $n \geq 0$ is an integer.
(d) The mass passes through the equilibrium point when

$$
0=x(t) \quad \Longrightarrow \quad 20 t-\theta=n \pi \quad \Longrightarrow \quad t=\frac{\theta}{20}+\frac{n \pi}{20}
$$

where $n \geq 0$ is an integer.
(e) The mass has velocity 2 when

$$
2=x^{\prime}(t)=\frac{2 \sqrt{626}}{5} \cos (20 t-\theta) \quad \Longrightarrow \quad \cos (20 t-\theta)=\frac{5}{\sqrt{626}}
$$

This is true when

$$
20 t-\theta=\operatorname{Cos}^{-1}\left(\frac{5}{\sqrt{626}}\right)+\frac{(2 n+1) \pi}{2} \Longrightarrow t=\frac{1}{20} \operatorname{Cos}^{-1}\left(\frac{5}{\sqrt{626}}\right)+\frac{\theta}{20}+\frac{(2 n+1) \pi}{40}
$$

where $n \geq 0$ is an integer.
(f) The mass is 1 cm above its equilibrium position when

$$
\frac{1}{100}=\frac{\sqrt{626}}{50} \sin (20 t-\theta) \quad \Longrightarrow \quad \sin (20 t-\theta)=\frac{1}{2 \sqrt{626}}
$$

This is true when

$$
20 t-\theta=\left\{\begin{array}{l}
\operatorname{Sin}^{-1}\left(\frac{1}{2 \sqrt{626}}\right)+2 n \pi \\
\pi-\operatorname{Sin}^{-1}\left(\frac{1}{2 \sqrt{626}}\right)+2 n \pi
\end{array} \Longrightarrow \quad t=\left\{\begin{array}{l}
\frac{1}{20} \operatorname{Sin}^{-1}\left(\frac{1}{2 \sqrt{626}}\right)+\frac{n \pi}{20} \\
-\frac{1}{20} \operatorname{Sin}^{-1}\left(\frac{1}{2 \sqrt{626}}\right)+\frac{(2 n+1) \pi}{20}
\end{array}\right.\right.
$$

where $n \geq 0$ is an integer.
(g) The velocity of the mass is 12 if, and when,

$$
12=\frac{2 \sqrt{626}}{5} \cos (20 t-\theta) \quad \Longrightarrow \quad \cos (20 t-\theta)=\frac{30}{\sqrt{626}}>1
$$

Hence, the mass never attains this velocity.
(h) The mass is at maximum height when

$$
\begin{aligned}
\frac{\sqrt{626}}{50}=\frac{\sqrt{626}}{50} \sin (20 t-\theta) & \Longrightarrow \sin (20 t-\theta)=1 \quad \Longrightarrow \quad 20 t-\theta=\frac{(4 n+1) \pi}{2} \\
& \Longrightarrow t=\frac{\theta}{20}+\frac{(4 n+1) \pi}{40},
\end{aligned}
$$

where $n \geq 0$ is an integer. This happens for the second time when $n=1$, in which case $t=$ $\theta / 20+7 \pi / 40$.
15. If s is the stretch in the spring at equilibrium, then $k s=M g$ so that $s=M g / k$. This is the initial displacement of the mass relative to the equilibrium position. The initial-value problem describing the position $x(t)$ of the mass relative to the equilibrium position is

$$
M \frac{d^{2} x}{d t^{2}}+k x=0, \quad x(0)=\frac{M g}{k}, \quad x^{\prime}(0)=0
$$

The auxiliary equation is $M m^{2}+k=0$ with solutions $m= \pm \sqrt{k / M} i$. A general solution of the differential equation is $x(t)=C_{1} \cos (\sqrt{k / M} t)+C_{2} \sin (\sqrt{k / M} t)$. To satisfy the initial conditions, we must have $M g / k=C_{1}$ and $0=\sqrt{k / M} C_{2}$. Thus,

$$
x(t)=\frac{M g}{k} \cos \sqrt{\frac{k}{M}} t \mathrm{~m}
$$

16. From time $t=0$ when the container is attached to the spring until water has completely drained out, the mass of the container is $M-r t / m$.
(a) With the coordinate system of Figure 5.4, Newton's second law 3.4 gives

$$
\frac{d}{d t}\left[\left(M-\frac{r t}{m}\right) \frac{d y}{d t}\right]=-\left(M-\frac{r t}{m}\right) g-\beta \frac{d y}{d t}-k y
$$

By expanding the first term, we can write the differential equation in the form

$$
\left(M-\frac{r t}{m}\right) \frac{d^{2} y}{d t^{2}}+\left(\beta-\frac{r}{m}\right) \frac{d y}{d t}+k y=-\left(M-\frac{r t}{m}\right) g
$$

The initial-value problem is this differential equation subject to $y(0)=0=y^{\prime}(0)$.
(b) Consider now the coordinate system of Figure 5.5 where $x=0$ corresponds to the position of the container were it full and at equilibrium. The stretch s in the spring at this position is given by the equation $k s-M g=0$. Newton's second law gives

$$
\frac{d}{d t}\left[\left(M-\frac{r t}{m}\right) \frac{d x}{d t}\right]=-\left(M-\frac{r t}{m}\right) g-\beta \frac{d x}{d t}+k(s-x)
$$

When we expand and use the equation $M g-k s=0$, we find

$$
\left(M-\frac{r t}{m}\right) \frac{d^{2} x}{d t^{2}}+\left(\beta-\frac{r}{m}\right) \frac{d x}{d t}+k x=\frac{r g t}{m}
$$

The initial-value problem is this differential equation subject to $x(0)=M g / k$ and $x^{\prime}(0)=0$. Because the coefficient of the second derivative in both equations is not constant, we cannot solve the differential equation with the techniques that we now have available.
17. (a) Since the cube floats half submerged, its density is one-half that of water, namely $500 \mathrm{~kg} / \mathrm{m}^{3}$. Suppose we let x denote the distance of the midpoint of the cube below the surface of the water. When the midpoint is $x \mathrm{~m}$ below the surface, the force on the cube is the buoyant force due to Archimedes' principle less the force of gravity,

$$
-9810 L^{2}\left(\frac{L}{2}+x\right)+4905 L^{3}=-9810 L^{2} x
$$

The differential equation describing oscillations of the cube is therefore

$$
500 L^{3} \frac{d^{2} x}{d t^{2}}=-9810 L^{2} x \quad \Longrightarrow \quad x^{\prime \prime}+\frac{981}{50 L} x=0
$$

(b) The auxiliary equation $m^{2}+981 /(50 L)=0$ has solutions $m= \pm \sqrt{981 /(50 L)} i$, and therefore

$$
x(t)=C_{1} \cos \sqrt{\frac{981}{50 L}} t+C_{2} \sin \sqrt{\frac{981}{50 L}} t
$$

The frequency of the oscillations is $\frac{\sqrt{981 /(50 L)}}{2 \pi}=\frac{0.705}{\sqrt{L}} \mathrm{~Hz}$.
18. Let $B C$ be the line on the cylinder that resides in the surface of the water when the cylinder is at equilibrium. If x represents the depth of $B C$ below the surface when the cylinder is in motion, then Newton's second law for the acceleration of the cylinder is

$$
M \frac{d^{2} x}{d t^{2}}=-9.81(1000) \rho(A x)
$$

where M is the mass of the cylinder, A is its cross-sectional area, and ρ is its density. Since $M=\rho A L$, where L is the length of the cylinder,

$$
\rho A L \frac{d^{2} x}{d t^{2}}=-9810 \rho A x \Longrightarrow L \frac{d^{2} x}{d t^{2}}+9810 x=0
$$

The auxiliary equation $L m^{2}+9810=0$ has roots $m= \pm \sqrt{9810 / L} i$, so that
$x(t)=C_{1} \cos \sqrt{9810 / L} t+C_{2} \sin \sqrt{9810 / L} t$. Since the period of the oscillations is 4 s , it follows that $2 \pi \sqrt{L / 9810}=4 \Longrightarrow L=39240 / \pi^{2}$. The mass of the cylinder is therefore $\rho A L=$ $\rho(\pi / 100)\left(39240 / \pi^{2}\right)=124.9 \rho \mathrm{~kg}$.
19. Because the sphere floats half submerged, its density is one-half that of water, namely $500 \mathrm{~kg} / \mathrm{m}^{3}$. The resultant vertical force on the sphere when its centre is $y \mathrm{~m}$ below the surface is the buoyant force due to the water displaced by the sphere less the force of gravity on the sphere,

$$
-9810 V+4905\left(\frac{4}{3}\right) \pi R^{3}
$$

where V is the volume of water displaced by the sphere when its centre is $y \mathrm{~m}$ below the surface. We can calculate V with the following double iterated integral,

$$
\begin{aligned}
V & =\int_{0}^{R+y} \int_{0}^{\sqrt{R^{2}-(z-y)^{2}}} 2 \pi x d x d z=2 \pi \int_{0}^{R+y}\left\{\frac{x^{2}}{2}\right\}_{0}^{\sqrt{R^{2}-(z-y)^{2}}} d z \\
& =\pi \int_{0}^{R+y}\left[R^{2}-(z-y)^{2}\right] d z=\pi\left\{R^{2} z-\frac{(z-y)^{3}}{3}\right\}_{0}^{R+y}=\frac{\pi}{3}\left(2 R^{3}+3 R^{2} y-y^{3}\right)
\end{aligned}
$$

The resultant force on the sphere when its centre is at depth y is therefore

$$
\frac{-9810 \pi}{3}\left(2 R^{3}+3 R^{2} y-y^{3}\right)+\frac{19620}{3} \pi R^{3}=\frac{9810 \pi}{3}\left(y^{3}-3 R^{2} y\right)
$$

Newton's second law now gives

$$
\frac{4}{3} \pi R^{3}(500) \frac{d^{2} y}{d t^{2}}=\frac{9810 \pi}{3}\left(y^{3}-3 R^{2} y\right) \quad \Longrightarrow \quad \frac{d^{2} y}{d t^{2}}=-\frac{3(9.81)}{2 R^{3}}\left(R^{2} y-\frac{y^{3}}{3}\right)
$$

This is not a linear equation.

EXERCISES 5.2

1. The initial-value problem describing the position $x(t)$ of the mass is

$$
\text { (1) } \frac{d^{2} x}{d t^{2}}+\frac{1}{10} \frac{d x}{d t}+16 x=0, \quad x(0)=-\frac{1}{10}, \quad x^{\prime}(0)=0 .
$$

The auxiliary equation is $10 m^{2}+m+160=0$ with solutions $m=(-1 \pm 9 \sqrt{79} i) / 20$. A general solution of the differential equation is $x(t)=e^{-t / 20}\left[C_{1} \cos (9 \sqrt{79} t / 20)+C_{2} \sin (9 \sqrt{79} t / 20)\right]$. To satisfy the initial conditions, we must have $-1 / 10=C_{1}$ and $0=-C_{1} / 20+9 \sqrt{79} C_{2} / 20$. These give

$$
x(t)=e^{-t / 20}\left(-\frac{1}{10} \cos \frac{9 \sqrt{79} t}{20}-\frac{\sqrt{79}}{7110} \sin \frac{9 \sqrt{79} t}{20}\right) \mathrm{m} .
$$

2. The initial-value problem describing the position $x(t)$ of the mass is

$$
\text { (1) } \frac{d^{2} x}{d t^{2}}+10 \frac{d x}{d t}+16 x=0, \quad x(0)=-\frac{1}{10}, \quad x^{\prime}(0)=0
$$

The auxiliary equation is $m^{2}+10 m+16=0$ with solutions $m=-2,-8$. A general solution of the differential equation is $x(t)=C_{1} e^{-2 t}+C_{2} e^{-8 t}$. The initial conditions require $-1 / 10=C_{1}+C_{2}$ and $0=-2 C_{1}-8 C_{2}$. These give $C_{1}=-2 / 15$ and $C_{2}=1 / 30$. Thus, $x(t)=\left(e^{-8 t}-4 e^{-2 t}\right) / 30 \mathrm{~m}$.
3. The differential equation for motion with an unspecified damping factor is

$$
\text { (1) } \frac{d^{2} x}{d t^{2}}+\beta \frac{d x}{d t}+16 x=0
$$

Critically damped motion ocurs when roots of the auxiliary equation $m^{2}+\beta m+16=0$ are real and equal, and this occurs when the discriminant of the quadratic is equal to zero,

$$
\beta^{2}-4(1)(16)=0 \quad \Longrightarrow \quad \beta=8
$$

4. The initial-value problem describing the position $x(t)$ of the mass is

$$
\frac{1}{10} \frac{d^{2} x}{d t^{2}}+40 \frac{d x}{d t}+4000 x=0, \quad x(0)=\frac{1}{50}, \quad x^{\prime}(0)=-4
$$

The auxiliary equation is $m^{2}+400 m+40000=0$ with solutions $m=-200,-200$. A general solution of the differential equation is $x(t)=\left(C_{1}+C_{2} t\right) e^{-200 t}$. To satisfy the initial conditions, we must have

$$
\frac{1}{50}=C_{1}, \quad-4=-200 C_{1}+C_{2} \quad \Longrightarrow \quad C_{2}=0
$$

Thus, $x(t)=(1 / 50) e^{-200 t} \mathrm{~m}$. Since this function is never equal to zero, the mass does not pass through the equilibrium position.
5. The initial-value problem describing the position $x(t)$ of the mass is

$$
\frac{1}{10} \frac{d^{2} x}{d t^{2}}+40 \frac{d x}{d t}+4000 x=0, \quad x(0)=\frac{1}{50}, \quad x^{\prime}(0)=-10
$$

The auxiliary equation is $m^{2}+400 m+40000=0$ with solutions $m=-200,-200$. A general solution of the differential equation is $x(t)=\left(C_{1}+C_{2} t\right) e^{-200 t}$. To satisfy the initial conditions, we must have

$$
\frac{1}{50}=C_{1}, \quad-10=-200 C_{1}+C_{2} \quad \Longrightarrow \quad C_{2}=-6
$$

Thus, $x(t)=\left(\frac{1}{50}-6 t\right) e^{-200 t} \mathrm{~m}$. The mass passes through the equilibrium position if this function is ever equal to zero,

$$
\left(\frac{1}{50}-6 t\right) e^{-200 t}=0 \quad \Longrightarrow \quad t=\frac{1}{300} \mathrm{~s}
$$

6. (a) The initial-value problem describing the position $x(t)$ of the mass is

$$
\text { (1) } \frac{d^{2} x}{d t^{2}}+15 \frac{d x}{d t}+50 x=0, \quad x(0)=\frac{1}{20}, \quad x^{\prime}(0)=3 .
$$

The auxiliary equation is $m^{2}+15 m+50=0$ with solutions $m=-5,-10$. A general solution of the differential equation is $x(t)=C_{1} e^{-5 t}+C_{2} e^{-10 t}$. To satisfy the initial conditions, we must have

$$
\frac{1}{20}=C_{1}+C_{2}, \quad 3=-5 C_{1}-10 C_{2} \quad \Longrightarrow \quad C_{1}=\frac{7}{10}, \quad C_{2}=-\frac{13}{20}
$$

Thus, $x(t)=\frac{1}{20}\left(14 e^{-5 t}-13 e^{-10 t}\right) \mathrm{m}$.
(b) The mass passes through the equilibrium position if this function is ever equal to zero,

$$
\frac{1}{20}\left(14 e^{-5 t}-13 e^{-10 t}\right)=0 \quad \Longrightarrow \quad e^{5 t}=\frac{13}{14}
$$

Since this cannot happen for $t>0$, the mass does not pass through its equilibrium position.
(c) The mass is 1 cm above the equilibrium position when

$$
\frac{1}{20}\left(14 e^{-5 t}-13 e^{-10 t}\right)=\frac{1}{100} \quad \Longrightarrow e^{10 t}-70 e^{5 t}+65=0
$$

Solutions of this quadratic equation in $e^{5 t}$ are

$$
e^{5 t}=\frac{70 \pm \sqrt{4900-4(65)}}{2}=35 \pm 2 \sqrt{290}
$$

Since t must be positive, we take the positive root, in which case $t=(1 / 5) \ln (35+2 \sqrt{290}) \mathrm{s}$.

7. (a) The initial-value problem describing the position $x(t)$ of the mass is

$$
\text { (1) } \frac{d^{2} x}{d t^{2}}+15 \frac{d x}{d t}+50 x=0, \quad x(0)=\frac{1}{20}, \quad x^{\prime}(0)=-1
$$

The auxiliary equation is $m^{2}+15 m+50=0$ with solutions $m=-5,-10$. A general solution of the differential equation is $x(t)=C_{1} e^{-5 t}+C_{2} e^{-10 t}$. To satisfy the initial conditions, we must have

$$
\frac{1}{20}=C_{1}+C_{2}, \quad-1=-5 C_{1}-10 C_{2} \quad \Longrightarrow \quad C_{1}=-\frac{1}{10}, \quad C_{2}=\frac{3}{20}
$$

Thus, $x(t)=\frac{1}{20}\left(3 e^{-10 t}-2 e^{-5 t}\right) \mathrm{m}$.
(b) The mass passes through the equilibrium position if this function is ever equal to zero,

$$
\frac{1}{20}\left(3 e^{-10 t}-2 e^{-5 t}\right)=0 \quad \Longrightarrow \quad e^{5 t}=\frac{3}{2} \quad \Longrightarrow \quad t=\frac{1}{5} \ln (3 / 2) \mathrm{s}
$$

(c) The mass is 1 cm above the equilibrium position when

$$
\frac{1}{20}\left(3 e^{-10 t}-2 e^{-5 t}\right)=\frac{1}{100} \quad \Longrightarrow e^{10 t}+10 e^{5 t}-15=0
$$

Solutions of this quadratic equation in $e^{5 t}$ are

$$
e^{5 t}=\frac{-10 \pm \sqrt{100+60}}{2}=-5 \pm 2 \sqrt{10}
$$

Since t must be positive, we take the positive root, in which case $t=(1 / 5) \ln (2 \sqrt{10}-5) \mathrm{s}$.

8. (a) The initial-value problem describing the position $x(t)$ of the mass is

$$
\text { (1) } \frac{d^{2} x}{d t^{2}}+15 \frac{d x}{d t}+50 x=0, \quad x(0)=\frac{1}{20}, \quad x^{\prime}(0)=-3 .
$$

The auxiliary equation is $m^{2}+15 m+50=0$ with solutions $m=-5,-10$. A general solution of the differential equation is $x(t)=C_{1} e^{-5 t}+C_{2} e^{-10 t}$. To satisfy the initial conditions, we must have

$$
\frac{1}{20}=C_{1}+C_{2}, \quad-3=-5 C_{1}-10 C_{2} \quad \Longrightarrow \quad C_{1}=-\frac{1}{2}, \quad C_{2}=\frac{11}{20}
$$

Thus, $x(t)=\frac{1}{20}\left(11 e^{-10 t}-10 e^{-5 t}\right) \mathrm{m}$.
(b) The mass passes through the equilibrium position if this function is ever equal to zero,

$$
\frac{1}{20}\left(11 e^{-10 t}-10 e^{-5 t}\right)=0 \quad \Longrightarrow \quad e^{5 t}=\frac{11}{10} \quad \Longrightarrow \quad t=\frac{1}{5} \ln (11 / 10) \mathrm{s}
$$

(c) The mass is 1 cm above the equilibrium position when

$$
\frac{1}{20}\left(11 e^{-10 t}-10 e^{-5 t}\right)=\frac{1}{100} \quad \Longrightarrow e^{10 t}+50 e^{5 t}-55=0
$$

Solutions of this quadratic equation in $e^{5 t}$ are

$$
e^{5 t}=\frac{-50 \pm \sqrt{2500+220}}{2}=-25 \pm 2 \sqrt{170}
$$

Since t must be positive, we take the positive root, in which case $t=(1 / 5) \ln (2 \sqrt{170}-25) \mathrm{s}$.

The mass is 1 cm below the equilibrium position when

$$
\frac{1}{20}\left(11 e^{-10 t}-10 e^{-5 t}\right)=-\frac{1}{100} \quad \Longrightarrow e^{10 t}-50 e^{5 t}+55=0
$$

Solutions of this quadratic equation in $e^{5 t}$ are

$$
e^{5 t}=\frac{50 \pm \sqrt{2500-220}}{2}=25 \pm \sqrt{570} \quad \Longrightarrow \quad t=\frac{1}{5} \ln (25 \pm \sqrt{570}) \mathrm{s}
$$

9. (a) The initial-value problem describing the position $x(t)$ of the mass is

$$
2 \frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+200 x=0, \quad x(0)=\frac{1}{10}, \quad x^{\prime}(0)=5
$$

The auxiliary equation is $2 m^{2}+4 m+200=0$ with solutions $m=-1 \pm 3 \sqrt{11} i$. A general solution of the differential equation is $\left.x(t)=e^{-t}\left[C_{1} \cos (3 \sqrt{11} t)+C_{2} \sin 3 \sqrt{11} t\right)\right]$. To satisfy the initial conditions, we must have

$$
\frac{1}{10}=C_{1}, \quad 5=-C_{1}+3 \sqrt{11} C_{2} \quad \Longrightarrow \quad C_{2}=\frac{17 \sqrt{11}}{110}
$$

Thus, $x(t)=\frac{e^{-t}}{110}[11 \cos (3 \sqrt{11} t)+17 \sqrt{11} \sin (3 \sqrt{11} t)] \mathrm{m}$.
(b) Maximum distance from equilibrium is attained when velocity is equal to zero for the first time,
$0=x^{\prime}(t)=-\frac{e^{-t}}{110}[11 \cos (3 \sqrt{11} t)+17 \sqrt{11} \sin (3 \sqrt{11} t)]+\frac{e^{-t}}{110}[-33 \sqrt{11} \sin (3 \sqrt{11} t)+561 \cos (3 \sqrt{11} t)]$.
This equation implies that
$550 \cos (3 \sqrt{11} t)=50 \sqrt{11} \sin (3 \sqrt{11} t) \quad \Longrightarrow \quad \tan (3 \sqrt{11} t)=\sqrt{11} \quad \Longrightarrow \quad t=\frac{1}{3 \sqrt{11}} \operatorname{Tan}^{-1} \sqrt{11}+\frac{n \pi}{3 \sqrt{11}}$,
where $n \geq 0$ is an integer. We choose $n=0$ for maximum distance, in which case
$t=\frac{1}{3 \sqrt{11}} \operatorname{Tan}^{-1} \sqrt{11}$. When this is substituted into $x(t)$, the result is $x=0.457 \mathrm{~m}$ or 45.7 cm .
(c) The mass passes through the equilibrium position when

$$
0=x(t)=\frac{e^{-t}}{110}[11 \cos (3 \sqrt{11} t)+17 \sqrt{11} \sin (3 \sqrt{11} t)] \quad \Longrightarrow \quad \tan (3 \sqrt{11} t)=-\frac{\sqrt{11}}{17}
$$

Thus, $t=\frac{1}{3 \sqrt{11}} \operatorname{Tan}^{-1}\left(\frac{-\sqrt{11}}{17}\right)+\frac{n \pi}{3 \sqrt{11}}$, where $n \geq 1$ is an integer. When we choose $n=1$ for the first pass through the origin, $t=\frac{1}{3 \sqrt{11}} \operatorname{Tan}^{-1}\left(\frac{-\sqrt{11}}{17}\right)+\frac{\pi}{3 \sqrt{11}} \approx 0.296 \mathrm{~s}$.
10. (a) The initial-value problem describing the position $x(t)$ of the mass is

$$
\text { (1) } \frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+40 x=0, \quad x(0)=-\frac{1}{20}, \quad x^{\prime}(0)=0
$$

The auxiliary equation is $m^{2}+2 m+40=0$ with solutions $m=-1 \pm \sqrt{39} i$. A general solution of the differential equation is $x(t)=e^{-t}\left(C_{1} \cos \sqrt{39} t+C_{2} \sin \sqrt{39} t\right)$. To satisfy the initial conditions, we must have

$$
-\frac{1}{20}=C_{1}, \quad 0=-C_{1}+\sqrt{39} C_{2} \quad \Longrightarrow \quad C_{2}=-\frac{\sqrt{39}}{780}
$$

Thus, $x(t)=-\frac{e^{-t}}{780}[39 \cos \sqrt{39} t+\sqrt{39} \sin \sqrt{39} t] \mathrm{m}$. We now set

$$
-\frac{1}{780}(39 \cos \sqrt{39} t+\sqrt{39} \sin \sqrt{39} t)=A \sin (\sqrt{39} t+\phi)=A(\sin \sqrt{39} t \cos \phi+\cos \sqrt{39} t \sin \phi)
$$

This implies that

$$
A \cos \phi=-\frac{\sqrt{39}}{780}, \quad A \sin \phi=-\frac{39}{780}
$$

Squaring and adding these gives

$$
A^{2}=\frac{39}{780^{2}}+\frac{39^{2}}{780^{2}}=\frac{1}{390} \quad \Longrightarrow \quad A=\frac{1}{\sqrt{390}}
$$

Hence,

$$
\cos \phi=-\frac{\sqrt{39} \sqrt{390}}{780}, \quad \sin \phi=-\frac{39 \sqrt{390}}{780}
$$

One solution of these equations is $\phi=-1.73$. Thus, $x(t)=\frac{1}{\sqrt{390}} \sin (\sqrt{39} t-1.73)$.
(b) The mass passes through the equilibrium position when

$$
0=x(t)=\frac{1}{\sqrt{390}} \sin (\sqrt{39} t-1.73) \quad \Longrightarrow \quad \sqrt{39} t-1.73=n \pi \quad \Longrightarrow \quad t=\frac{n \pi+1.73}{\sqrt{39}}
$$

where $n \geq 0$ is an integer. The distance between successive times is $\pi / \sqrt{39}$.
11. (a) The initial-value problem describing the position $x(t)$ of the mass is

$$
M \frac{d^{2} x}{d t^{2}}+\beta \frac{d x}{d t}+k x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=v_{0}
$$

The auxiliary equation is $M m^{2}+\beta m+k=0$ with solutions $m=\frac{-\beta \pm \sqrt{\beta^{2}-4 k M}}{2 M}$. Since the motion is critically damped, $\beta^{2}-4 k M=0$, and the auxiliary has equal roots $m=-\beta /(2 M)$. A general solution of the differential equation is $x(t)=\left(C_{1}+C_{2} t\right) e^{-\beta t /(2 M)}$. To satisfy the initial conditions, we must have

$$
x_{0}=C_{1}, \quad v_{0}=C_{2}-\frac{\beta}{2 M} C_{1} \quad \Longrightarrow \quad C_{2}=v_{0}+\frac{\beta x_{0}}{2 M} .
$$

Thus, $x(t)=\left[x_{0}+\left(v_{0}+\frac{\beta x_{0}}{2 M}\right) t\right] e^{-\beta t /(2 M)} \mathrm{m}$. The mass passes through the equilibrium position when

$$
0=x(t)=\left[x_{0}+\left(v_{0}+\frac{\beta x_{0}}{2 M}\right) t\right] e^{-\beta t /(2 M)} \quad \Longrightarrow \quad t=-\frac{x_{0}}{v_{0}+\beta x_{0} /(2 M)} .
$$

When x_{0} and v_{0} are both positive, or both are negative, this value is negative, an unacceptable value.
(b) The equation defining t in part (a) yields only one value; that is, there can be at most one time at which the mass passes through equilibrium. There will be one when the equation yields a positive value for t. This occurs when

$$
-\frac{x_{0}}{v_{0}+\beta x_{0} /(2 M)}>0
$$

When $x_{0}>0$, this requires

$$
v_{0}+\frac{\beta x_{0}}{2 M}<0 \quad \Longrightarrow \quad \frac{v_{0}}{x_{0}}+\frac{\beta}{2 M}<0
$$

On the other hand when $x_{0}<0$, we must have

$$
v_{0}+\frac{\beta x_{0}}{2 M}>0 \quad \Longrightarrow \quad \frac{v_{0}}{x_{0}}+\frac{\beta}{2 M}<0
$$

12. (a) The initial-value problem describing the position $x(t)$ of the mass is

$$
M \frac{d^{2} x}{d t^{2}}+\beta \frac{d x}{d t}+k x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=v_{0}
$$

The auxiliary equation is $M m^{2}+\beta m+k=0$ with solutions $m=\frac{-\beta \pm \sqrt{\beta^{2}-4 k M}}{2 M}$. Since the motion is overdamped, $\beta^{2}-4 k M>0$, and the auxiliary has real roots. Suppose we denote them by $\omega_{1}=\frac{-\beta-\sqrt{\beta^{2}-4 k M}}{2 M}$ and $\omega_{2}=\frac{-\beta+\sqrt{\beta^{2}-4 k M}}{2 M}$. A general solution of the differential equation is $x(t)=C_{1} e^{\omega_{1} t}+C_{2} e^{\omega_{2} t}$. To satisfy the initial conditions, we must have

$$
x_{0}=C_{1}+C_{2}, \quad v_{0}=\omega_{1} C_{1}+\omega_{2} C_{2} \quad \Longrightarrow \quad C_{1}=\frac{\omega_{2} x_{0}-v_{0}}{\omega_{2}-\omega_{1}}, \quad C_{2}=\frac{v_{0}-\omega_{1} x_{0}}{\omega_{2}-\omega_{1}} .
$$

Thus,

$$
x(t)=\left(\frac{\omega_{2} x_{0}-v_{0}}{\omega_{2}-\omega_{1}}\right) e^{\omega_{1} t}+\left(\frac{v_{0}-\omega_{1} x_{0}}{\omega_{2}-\omega_{1}}\right) e^{\omega_{2} t} \mathrm{~m}
$$

The mass passes through the equilibrium position when

$$
0=x(t)=\left(\frac{\omega_{2} x_{0}-v_{0}}{\omega_{2}-\omega_{1}}\right) e^{\omega_{1} t}+\left(\frac{v_{0}-\omega_{1} x_{0}}{\omega_{2}-\omega_{1}}\right) e^{\omega_{2} t}
$$

This implies that

$$
e^{\sqrt{\beta^{2}-4 k M} t / M}=\frac{1-\frac{\omega_{2} x_{0}}{v_{0}}}{1-\frac{\omega_{1} x_{0}}{v_{0}}}
$$

When x_{0} and v_{0} are both positive, or both are negative, the right side of this equation is between 0 and 1 , an unacceptable value.
(b) The equation defining t in part (a) yields only one value; that is, there can be at most one time at which the mass passes through equilibrium. There will be one when the equation yields a positive value for t. This occurs when

$$
\frac{1-\frac{\omega_{2} x_{0}}{v_{0}}}{1-\frac{\omega_{1} x_{0}}{v_{0}}}>1
$$

If $1-\omega_{1} x_{0} / v_{0}>0$, this requires

$$
1-\frac{\omega_{2} x_{0}}{v_{0}}>1-\frac{\omega_{1} x_{0}}{v_{0}} \quad \Longrightarrow \quad \omega_{2}<\omega_{1}
$$

a contradiction. Thus, we must have

$$
1-\frac{\omega_{1} x_{0}}{v_{0}}<0 \quad \Longrightarrow \quad \frac{v_{0}}{x_{0}}-\omega_{1}>0 \quad \Longrightarrow \quad \frac{\beta+\sqrt{\beta^{2}-4 k M}}{2 M}+\frac{v_{0}}{x_{0}}<0
$$

13. If x measures displacement of the platform from its equilibrium position, then the differential equation for the combined motion is

$$
\left(\frac{W+w}{g}\right) \frac{d^{2} x}{d t^{2}}+\beta \frac{d x}{d t}+k x=0
$$

The auxiliary equation is $\quad\left(\frac{W+w}{g}\right) m^{2}+\beta m+k=0 \quad$ with solutions

$$
m=\frac{-\beta \pm \sqrt{\beta^{2}-4 k(W+w) / g}}{2(W+w) / g}
$$

Oscillations occur for large w, and for small values of w no oscillations occur. The largest value of w for no oscillations occurs when

$$
\beta^{2}-\frac{4 k(W+w)}{g}=0 \quad \Longrightarrow \quad w=\frac{\beta^{2} g}{4 k}-W
$$

14. (a) The initial-value problem describing the position $x(t)$ of the mass is

$$
M \frac{d^{2} x}{d t^{2}}+\beta \frac{d x}{d t}+k x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=v_{0}
$$

The auxiliary equation is $M m^{2}+\beta m+k=0$ with solutions $m=\frac{-\beta \pm \sqrt{\beta^{2}-4 k M}}{2 M}$. Since the motion is underdamped, $\beta^{2}-4 k M<0$, and the auxiliary has equal roots $m=(-\beta \pm$ $\left.\sqrt{4 k M-\beta^{2}} i\right) /(2 M)$. A general solution of the differential equation is

$$
x(t)=e^{-\beta t /(2 M)}\left[C_{1} \cos \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t\right)+C_{2} \sin \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t\right)\right]
$$

The initial conditions determine values for C_{1} and C_{2}, but we shall not need them. Any function of this form can also be expressed in the form

$$
x(t)=A e^{-\beta t /(2 M)} \sin \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t+\phi\right)
$$

(b) The times at which the mass passes through equilibrium are defined by the equation

$$
0=x(t)=A e^{-\beta t /(2 M)} \sin \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t+\phi\right) \quad \Longrightarrow \quad \sin \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t+\phi\right)=0
$$

Hence,

$$
\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t+\phi=n \pi \quad \Longrightarrow \quad t=\frac{2 M(n \pi-\phi)}{\sqrt{4 k M-\beta^{2}}}
$$

where $n \geq 1$ is an integer. The time interval between successive passes throught the origin is $\frac{2 M \pi}{\sqrt{4 k M-\beta^{2}}}$.
(c) Times at which the velocity of the mass is equal to zero are given by
$0=A\left[-\frac{\beta}{2 M} e^{-\beta t /(2 M)} \sin \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t+\phi\right)+\frac{\sqrt{4 k M-\beta^{2}}}{2 M} e^{-\beta t /(2 M)} \cos \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t+\phi\right)\right]$.
This simplifies to

$$
-\beta \sin \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t+\phi\right)+\sqrt{4 k M-\beta^{2}} \cos \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t+\phi\right)=0
$$

from which

$$
\tan \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t+\phi\right)=\frac{\sqrt{4 k M-\beta^{2}}}{\beta}
$$

Thus, times at which the velocity is zero are

$$
t_{n}=\frac{2 M}{\sqrt{4 k M-\beta^{2}}}\left[\operatorname{Tan}^{-1}\left(\frac{\sqrt{4 k M-\beta^{2}}}{\beta}\right)+n \pi-\phi\right],
$$

where $n \geq 1$ is an integer. Depending on values for ϕ and the inverse tangent function, n might start at a value other than 1. It makes no difference to the rest of our discussion. Suppose x_{n} are the corresponding values for $x(t)$. Consider the ratio

$$
\frac{x_{n}}{x_{n+2}}=\frac{e^{-\beta t_{n} /(2 M)} \sin \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t_{n}+\phi\right)}{e^{-\beta t_{n+2} /(2 M)} \sin \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t_{n+2}+\phi\right)}=e^{\beta\left(t_{n+2}-t_{n}\right) /(2 M)} \frac{\sin \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t_{n}+\phi\right)}{\sin \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t_{n+2}+\phi\right)}
$$

Since $t_{n+2}-t_{n}=\frac{2 M}{\sqrt{4 k M-\beta^{2}}}(2 \pi)=\frac{4 M \pi}{\sqrt{4 k M-\beta^{2}}}$,

$$
e^{\beta\left(t_{n+2}-t_{n}\right) /(2 M)}=e^{2 \beta \pi / \sqrt{4 k M-\beta^{2}}} .
$$

Furthermore,

$$
\begin{aligned}
\sin \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t_{n+2}+\phi\right) & =\sin \left[\operatorname{Tan}^{-1}\left(\frac{\sqrt{4 k M-\beta^{2}}}{\beta}\right)+(n+2) \pi\right] \\
& =\sin \left[\operatorname{Tan}^{-1}\left(\frac{\sqrt{4 k M-\beta^{2}}}{\beta}\right)+n \pi\right] \\
& =\sin \left(\frac{\sqrt{4 k M-\beta^{2}}}{2 M} t_{n}+\phi\right)
\end{aligned}
$$

Thus, $\frac{x_{n}}{x_{n+2}}=e^{2 \beta \pi / \sqrt{4 k M-\beta^{2}}}$.

EXERCISES 5.3

1. The solution is the same to the time and position of the first stop of the mass. During the return trip to the right, the initial-value problem defining the position of the mass is

$$
\frac{d^{2} x}{d t^{2}}+16 x=-\frac{g}{10}, \quad x(0.431082)=-0.191663, \quad x^{\prime}(0.431082)=0
$$

A general solution of this differential equation is

$$
x(t)=C_{3} \cos 4 t+C_{4} \sin 4 t-\frac{g}{160} .
$$

The initial conditions require

$$
\begin{aligned}
-0.191663 & =C_{3} \cos 4(0.431082)+C_{4} \sin 4(0.431082)-\frac{g}{160} \\
0 & =-4 C_{3} \sin 4(0.431082)+4 C_{4} \cos 4(0.431082)
\end{aligned}
$$

The solution is $C_{3}=0.0199344$ and $C_{4}=-0.128817$, so that

$$
x(t)=0.0199344 \cos 4 t-0.128817 \sin 4 t-\frac{g}{160}
$$

The mass comes to rest for the second time when

$$
0=x^{\prime}(t)=-4(0.0199344) \sin 4 t-4(0.128817) \cos 4 t \quad \Longrightarrow \quad \tan 4 t=-\frac{0.128817}{0.0199344}
$$

Thus, $t=-(1 / 4) \operatorname{Tan}^{-1}(0.128817 / 0.0199344)+n \pi / 4=-0.354316+n \pi / 4$. Since t must be larger than 0.431082 , we choose $n=2$ in which case $t=1.216480$. At this time, the position of the mass is

$$
x(1.216480)=0.0199344 \cos 4(1.216480)-0.128817 \sin 4(1.216480)-\frac{g}{160}=0.069038 \mathrm{~m} .
$$

2. (a) We should first check that the initial stretch in the spring is sufficient to overcome the force of static friction on the mass so that motion does occur. Since the coefficient of static friction is twice that of kinetic friction, it follows that the minimum force that will cause motion is 1 N . At a stretch of 6 cm , the spring force on the mass is $18(6 / 100)>1$. Thus, motion will occur. Since the x-component of the force of friction when the mass is moving to the left is $1 / 2 \mathrm{~N}$, the initial-value problem describing the position $x(t)$ of the mass from the time it starts until it comes to a stop for the first time is

$$
\frac{1}{2} \frac{d^{2} x}{d t^{2}}+18 x=\frac{1}{2} \quad \Longrightarrow \quad x^{\prime \prime}+36 x=1, \quad x(0)=0.06, \quad x^{\prime}(0)=0
$$

(b) The auxiliary equation is $m^{2}+36=0$ with solutions $m= \pm 6 i$, and therefore $x(t)=C_{1} \cos 6 t+$ $C_{2} \sin 6 t+1 / 36$. To satisfy the initial conditions, we must have $3 / 50=C_{1}+1 / 36$ and $0=6 C_{2}$. Thus, $x(t)=(29 / 900) \cos 6 t+1 / 36$. Since $v(t)=-(29 / 150) \sin 6 t$, the mass comes to rest for the first time when $6 t=\pi$, and at this time, its position is $x=(29 / 900) \cos \pi+1 / 36=-1 / 25$
3. (a) We should first check that the initial stretch in the spring is sufficient to overcome the force of static friction on the mass so that motion does occur. Since the coefficient of static friction is twice that of kinetic friction, it follows that the minimum force that will cause motion is 1 N . At a stretch of 25 cm , the spring force on the mass is $18(1 / 4)>1$. Thus, motion will occur. Since the x-component of the force of friction when the mass is moving to the left is $1 / 2 \mathrm{~N}$, the initial-value problem describing the position $x(t)$ of the mass from the time it starts until to a stop for the first time is

$$
\frac{1}{2} \frac{d^{2} x}{d t^{2}}+18 x=\frac{1}{2} \quad \Longrightarrow \quad x^{\prime \prime}+36 x=1, \quad x(0)=0.25 \quad x^{\prime}(0)=0
$$

(b) The auxiliary equation is $m^{2}+36=0$ with solutions $m= \pm 6 i$, and therefore $x(t)=C_{1} \cos 6 t+$ $C_{2} \sin 6 t+1 / 36$. To satisfy the initial conditions, we must have $1 / 4=C_{1}+1 / 36$ and $0=6 C_{2}$.

Thus, $x(t)=(2 / 9) \cos 6 t+1 / 36$. Since $v(t)=(-4 / 3) \sin 6 t$, the mass comes to rest for the first time when $6 t=\pi$, and at this time, its position is $x=(2 / 9) \cos \pi+1 / 36=-7 / 36 \mathrm{~m}$. The spring force at this position has magnitude $18(7 / 36)=7 / 2 \mathrm{~N}$. Since the force of static friction is 1 N , further motion will occur.
4. The initial-value problem describing the position $x(t)$ of the mass from the time it starts until it comes to a stop for the first time is

$$
\frac{1}{5} \frac{d^{2} x}{d t^{2}}+5 x=-\frac{1}{4}\left(\frac{1}{5}\right) g \quad \Longrightarrow \quad x^{\prime \prime}+25 x=-\frac{g}{4}, \quad x(0)=0, \quad x^{\prime}(0)=\frac{1}{2} .
$$

The auxiliary equation is $m^{2}+25=0$ with solutions $m= \pm 5 i$, and therefore $x(t)=C_{1} \cos 5 t+$ $C_{2} \sin 5 t-g / 100$. To satisfy the initial conditions, we must have $0=C_{1}-g / 100$ and $1 / 2=5 C_{2}$. Thus, $x(t)=(g / 100) \cos 5 t+(1 / 10) \sin 5 t-g / 100$. The mass comes to rest for the first time when

$$
0=x^{\prime}(t)=-\frac{g}{20} \sin 5 t+\frac{1}{2} \cos 5 t \quad \Longrightarrow \quad \tan 5 t=\frac{10}{g}
$$

Solutions are $t=(1 / 5) \operatorname{Tan}^{-1}(10 / g)+n \pi / 5=0.158998+n \pi / 5$, where n is an integer. The first positive solution is $t=0.158998$. The position of the mass at this time is

$$
x=\frac{g}{100} \cos 5(0.158998)+\frac{1}{10} \sin 5(0.158998)-\frac{g}{100}=0.0419843 \mathrm{~m} .
$$

The spring force at this position has magnitude $5(0.0419843)=0.210 \mathrm{~N}$. Since the maximum force of static friction is $(1 / 2)(1 / 5) g=0.981$, the mass will not move from this position.
5. The initial-value problem describing the position $x(t)$ of the mass from the time it starts until it comes to a stop for the first time is

$$
\frac{1}{5} \frac{d^{2} x}{d t^{2}}+5 x=-\frac{1}{4}\left(\frac{1}{5}\right) g \quad \Longrightarrow \quad x^{\prime \prime}+25 x=-\frac{g}{4}, \quad x(0)=0, \quad x^{\prime}(0)=2
$$

The auxiliary equation is $m^{2}+25=0$ with solutions $m= \pm 5 i$, and therefore $x(t)=C_{1} \cos 5 t+$ $C_{2} \sin 5 t-g / 100$. To satisfy the initial conditions, we must have $0=C_{1}-g / 100$ and $2=5 C_{2}$. Thus, $x(t)=(g / 100) \cos 5 t+(2 / 5) \sin 5 t-g / 100$. The mass comes to rest for the first time when

$$
0=x^{\prime}(t)=-\frac{g}{20} \sin 5 t+2 \cos 5 t \quad \Longrightarrow \quad \tan 5 t=\frac{40}{g} .
$$

Solutions are $t=(1 / 5) \operatorname{Tan}^{-1}(40 / g)+n \pi / 5=0.266059+n \pi / 5$, where n is an integer. The first positive solution is $t=0.266059$. The position of the mass at this time is

$$
x=\frac{g}{100} \cos 5(0.266059)+\frac{2}{5} \sin 5(0.266059)-\frac{g}{100}=0.313754 \mathrm{~m} .
$$

The spring force at this position has magnitude $5(0.313754)=1.57 \mathrm{~N}$. Since the maximum force of static friction is $(1 / 2)(1 / 5) g=0.981$, the mass will move from this position. The initial-value problem describing the position $x(t)$ of the mass until it comes to a stop for the second time is

$$
\frac{1}{5} \frac{d^{2} x}{d t^{2}}+5 x=\frac{9}{20} \quad \Longrightarrow \quad x^{\prime \prime}+25 x=\frac{g}{4}, \quad x(0)=0.313754, \quad x^{\prime}(0)=0
$$

where we have re-initiated time as $t=0$ at the start of this motion. A general solution of the differential equation is $x(t)=C_{1} \cos 5 t+C_{2} \sin 5 t+g / 100$. To satisfy the initial conditions, we must have $0.313754=C_{1}+g / 100$ and $0=5 C_{2}$. Thus, $x(t)=0.215654 \cos 5 t+g / 100$. The mass comes to rest for the second time when

$$
0=x^{\prime}(t)=-5(0.215654) \sin 5 t \quad \Longrightarrow \quad t=\frac{n \pi}{5} .
$$

The first positive solution is $t=\pi / 5$. The position of the mass at this time is

$$
x=0.215654 \cos \pi+\frac{g}{100}=-0.117554 \mathrm{~m}
$$

The spring force at this position has magnitude $5(0.117554)=0.588 \mathrm{~N}$. Since this is less than the maximum force of static friction, the mass will not move from this position.
6. The initial-value problem describing the position $x(t)$ of the mass relative to its equilibrium position is

$$
\frac{1}{10} \frac{d^{2} x}{d t^{2}}+4000 x=3 \cos 100 t \quad \Longrightarrow \quad x^{\prime \prime}+40000 x=30 \cos 100 t, \quad x(0)=0, \quad x^{\prime}(0)=10
$$

The auxiliary equation is $m^{2}+40000=0$ with solutions $m= \pm 200 i$. A general solution of the associated homogeneous equation is $x_{h}(t)=C_{1} \cos 200 t+C_{2} \sin 200 t$. Substituting a particular solution of the form $x_{p}=A \cos 100 t+B \sin 100 t$ into the differential equation gives

$$
(-10000 A \cos 100 t-10000 B \sin 100 t)+40000(A \cos 100 t+100 B \sin 100 t)=30 \cos 100 t
$$

This implies that $A=1 / 1000$ and $B=0$, so that $x(t)=C_{1} \cos 200 t+C_{2} \sin 200 t+(1 / 1000) \cos 100 t$. The initial conditions require $0=C_{1}+1 / 1000$ and $10=200 C_{2}$. Thus, $x(t)=-(1 / 1000) \cos 200 t+$ $(1 / 20) \sin 200 t+(1 / 1000) \cos 100 t \mathrm{~m}$. Because displacements are bounded, resonance does not occur.
7. The initial-value problem describing the position $x(t)$ of the mass relative to its equilibrium position is

$$
\frac{1}{10} \frac{d^{2} x}{d t^{2}}+4000 x=3 \cos 200 t \quad \Longrightarrow \quad x^{\prime \prime}+40000 x=30 \cos 200 t, \quad x(0)=0, \quad x^{\prime}(0)=10
$$

The auxiliary equation is $m^{2}+40000=0$ with solutions $m= \pm 200 i$. A general solution of the associated homogeneous equation is $x_{h}(t)=C_{1} \cos 200 t+C_{2} \sin 200 t$. Substituting a particular solution of the form $x_{p}=A t \cos 200 t+B t \sin 200 t$ into the differential equation gives

$$
\begin{aligned}
(-400 A \sin 200 t-40000 A t \cos 200 t & +400 B \cos 200 t-40000 B t \sin 200 t) \\
& +40000(A t \cos 200 t+B t \sin 200 t)=30 \cos 200 t
\end{aligned}
$$

This implies that $A=0$ and $B=3 / 40$, so that $x(t)=C_{1} \cos 200 t+C_{2} \sin 200 t+(3 t / 40) \sin 200 t$. The initial conditions require $0=C_{1}$ and $10=200 C_{2}$. Thus, $x(t)=(1 / 20+3 t / 40) \sin 200 t \mathrm{~m}$. Because displacements are unbounded, resonance occurs.
8. The initial-value problem describing the position of the mass relative to its equilibrium position is

$$
\text { (1) } \frac{d^{2} x}{d t^{2}}+64 x=2 \sin 4 t, \quad x(0)=0, \quad x^{\prime}(0)=0
$$

The auxiliary equation is $0=m^{2}+64$ with solutions $m= \pm 8 i$. A general solution of the associated homogeneous differential equation is $x_{h}(t)=C_{1} \cos 8 t+C_{2} \sin 8 t$. A particular solution is of the form $x_{p}(t)=A \sin 4 t+B \cos 4 t$. When we substitute this into the differential equation, we obtain

$$
(-16 A \sin 4 t-16 B \cos 4 t)+64(A \sin 4 t+B \cos 4 t)=2 \sin 4 t
$$

This implies that $A=1 / 24$ and $B=0$. A general solution of the differential equation is therefore $x(t)=C_{1} \cos 8 t+C_{2} \sin 8 t+(1 / 24) \sin 4 t$. To satisfy the initial conditions, we must have $0=C_{1}$ and $0=8 C_{2}+1 / 6$. Thus, $x(t)=-(1 / 48) \cos 8 t+(1 / 24) \sin 4 t \mathrm{~m}$. For large t, oscillations are bounded so resonance does not occur.
9. The initial-value problem describing the position of the mass relative to its equilibrium position is

$$
\text { (1) } \frac{d^{2} x}{d t^{2}}+64 x=2 \sin 8 t, \quad x(0)=0, \quad x^{\prime}(0)=0
$$

The auxiliary equation is $0=m^{2}+64$ with solutions $m= \pm 8 i$. A general solution of the associated homogeneous differential equation is $x_{h}(t)=C_{1} \cos 8 t+C_{2} \sin 8 t$. A particular solution is of the form $x_{p}(t)=A t \sin 8 t+B t \cos 8 t$. When we substitute this into the differential equation, we obtain

$$
=(-64 A t \sin 8 t 16 A \cos 8 t-64 B t \cos 8 t-16 B \sin 8 t)+64(A t \sin 8 t+B t \cos 8 t)=2 \sin 8 t .
$$

When we equate coefficents of $\sin 8 t$ and $\cos 8 t$, we get

$$
-16 B=2, \quad 16 A=0
$$

Thus, $x_{p}(t)=-(t / 8) \cos 8 t$, and $x(t)=C_{1} \cos 8 t+C_{2} \sin 8 t-(t / 8) \cos 8 t$. To satisfy the initial conditions, we must have $0=C_{1}$ and $0=8 C_{2}-1 / 8$. Hence, $x(t)=(1 / 64) \sin 8 t-(t / 8) \cos 8 t \mathrm{~m}$. For large t, oscillations are unbounded and resonance occurs.
10. The differential equation describing the position of the mass is $M \frac{d^{2} x}{d t^{2}}+k x=A \cos \omega t$. Solutions of the auxiliary equation $M m^{2}+k=0$ are $m= \pm \sqrt{k / M} i$. Hence, a general solution of the associated homogeneous equation is $x(t)=C_{1} \cos \sqrt{k / M} t+C_{2} \sin \sqrt{k / M} t$. Resonance occurs when $\sqrt{k / M}=\omega$.
11. The initial-value problem describing the position $x(t)$ of the mass relative to its equilibrium position is

$$
\frac{1}{5} \frac{d^{2} x}{d t^{2}}+\frac{3}{2} \frac{d x}{d t}+10 x=4 \sin 10 t \quad \Longrightarrow \quad 2 x^{\prime \prime}+15 x^{\prime}+100 x=40 \sin 10 t, \quad x(0)=0, \quad x^{\prime}(0)=0
$$

The auxiliary equation is $2 m^{2}+15 m+100=0$ with solutions $m=(-15 \pm 5 \sqrt{23} i) / 4$. A general solution of the associated homogeneous equation is

$$
x_{h}(t)=e^{-15 t / 4}\left(C_{1} \cos \frac{5 \sqrt{23} t}{4}+C_{2} \sin \frac{5 \sqrt{23} t}{4}\right)
$$

A particular solution of the differential equation is of the form $x_{p}(t)=A \sin 10 t+B \cos 10 t$. When we substitute this into the differential equation, we obtain

$$
\begin{aligned}
2(-100 A \sin 10 t-100 B \cos 10 t) & +15(10 A \cos 10 t-10 B \sin 10 t) \\
& +100(A \sin 10 t+B \cos 10 t)=40 \sin 10 t
\end{aligned}
$$

When we equate coefficients of $\sin 10 t$ and $\cos 10 t$, we get

$$
-200 A-150 B+100 A=40, \quad-200 B+150 A+100 B=0
$$

The solution is $A=-8 / 65$ and $B=-12 / 65$. Hence, a general solution of the differential equation is $x(t)=e^{-15 t / 4}\left[C_{1} \cos (5 \sqrt{23} t / 4)+C_{2} \sin (5 \sqrt{23} t / 4)\right]-(4 / 65)(3 \cos 10 t+2 \sin 10 t)$. To satisfy the initial conditions, we must have $0=C_{1}-12 / 65$ and $0=-15 C_{1} / 4+5 \sqrt{23} C_{2} / 4-16 / 13$. These imply that $C_{1}=12 / 65$ and $C_{2}=20 /(13 \sqrt{23})$, and therefore

$$
x(t)=e^{-15 t / 4}\left(\frac{12}{65} \cos \frac{5 \sqrt{23} t}{4}+\frac{20}{13 \sqrt{23}} \sin \frac{5 \sqrt{23} t}{4}\right)-\frac{4}{65}(3 \cos 10 t+2 \sin 10 t) \mathrm{m}
$$

12. (a) The initial-value problem describing the position $x(t)$ of the mass relative to its equilibrium position is

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+100 x=2 \sin \omega t, \quad x(0)=0, \quad x^{\prime}(0)=0
$$

The auxiliary equation is $m^{2}+2 m+100=0$ with solutions $m=-1 \pm 3 \sqrt{11} i$. A general solution of the associated homogeneous equation is $x_{h}(t)=e^{-t}\left(C_{1} \cos 3 \sqrt{11} t+C_{2} \sin 3 \sqrt{11} t\right)$. A particular solution of the differential equation is of the form $x_{p}(t)=A \sin \omega t+B \cos \omega t$. When we substitute this into the differential equation, we obtain

$$
\begin{aligned}
\left(-\omega^{2} A \sin \omega t-\omega^{2} B \cos \omega t\right) & +2(\omega A \cos \omega t-\omega B \sin \omega t) \\
& +100(A \sin \omega t+B \cos \omega t)=2 \sin \omega t
\end{aligned}
$$

When we equate coefficients of $\sin \omega t$ and $\cos \omega t$, we get

$$
-\omega^{2} A-2 \omega B+100 A=2, \quad-\omega^{2} B+2 \omega A+100 B=0
$$

The solution is $A=2\left(100-\omega^{2}\right) /\left[\left(100-\omega^{2}\right)^{2}+4 \omega^{2}\right]$ and $B=-4 \omega /\left[\left(100-\omega^{2}\right)^{2}+4 \omega^{2}\right]$. Hence, a general solution of the differential equation is

$$
x(t)=e^{-t}\left(C_{1} \cos 3 \sqrt{11} t+C_{2} \sin 3 \sqrt{11} t\right)+\frac{1}{\left(100-\omega^{2}\right)^{2}+4 \omega^{2}}\left[2\left(100-\omega^{2}\right) \sin \omega t-4 \omega \cos \omega t\right]
$$

To satisfy the initial conditions, we must have

$$
0=C_{1}-\frac{4 \omega}{\left(100-\omega^{2}\right)^{2}+4 \omega^{2}}, \quad 0=-C_{1}+3 \sqrt{11} C_{2}+\frac{2 \omega\left(100-\omega^{2}\right)}{\left(100-\omega^{2}\right)^{2}+4 \omega^{2}}
$$

These imply that

$$
C_{1}=\frac{4 \omega}{\left(100-\omega^{2}\right)^{2}+4 \omega^{2}}, \quad C_{2}=\frac{2}{3 \sqrt{11}}\left[\frac{\omega\left(\omega^{2}-98\right)}{\left(100-\omega^{2}\right)^{2}+4 \omega^{2}}\right]
$$

The position of the mass is therefore

$$
\begin{aligned}
x(t)= & e^{-t}\left\{\frac{4 \omega}{\left(100-\omega^{2}\right)^{2}+4 \omega^{2}} \cos 3 \sqrt{11} t+\frac{2 \sqrt{11} \omega\left(\omega^{2}-98\right)}{33\left[\left(100-\omega^{2}\right)^{2}+4 \omega^{2}\right]} \sin 3 \sqrt{11} t\right\} \\
& +\frac{1}{\left(100-\omega^{2}\right)^{2}+4 \omega^{2}}\left[2\left(100-\omega^{2}\right) \sin \omega t-4 \omega \cos \omega t\right] \\
= & \frac{1}{\left(100-\omega^{2}\right)^{2}+4 \omega^{2}}\left\{e^{-t}\left[4 \omega \cos 3 \sqrt{11} t+\frac{2 \sqrt{11} \omega\left(\omega^{2}-98\right)}{33} \sin 3 \sqrt{11} t\right]\right. \\
& \left.+\left[2\left(100-\omega^{2}\right) \sin \omega t-4 \omega \cos \omega t\right]\right\} \mathrm{m}
\end{aligned}
$$

(b) Resonance occurs when the amplitude of the steady-state part of the solution, namely,

$$
x_{p}(t)=\frac{1}{\left(100-\omega^{2}\right)^{2}+4 \omega^{2}}\left[2\left(100-\omega^{2}\right) \sin \omega t-4 \omega \cos \omega t\right]
$$

is a maximum. The amplitude is

$$
A=\frac{1}{\left(100-\omega^{2}\right)^{2}+4 \omega^{2}} \sqrt{4\left(100-\omega^{2}\right)^{2}+4 \omega^{2}}=\frac{2}{\sqrt{\left(100-\omega^{2}\right)^{2}+4 \omega^{2}}}
$$

This is a maximum when the derivative of $\left(100-\omega^{2}\right)^{2}+4 \omega^{2}$ vanishes,

$$
0=2\left(100-\omega^{2}\right)(-2 \omega)+8 \omega \quad \Longrightarrow \quad \omega=7 \sqrt{2} .
$$

Maximum amplitude is

$$
\frac{2}{\sqrt{(100-98)^{2}+4(98)}}=\frac{\sqrt{11}}{33} \mathrm{~m}
$$

13. (a) Substituting a particular solution of the form $x_{p}(t)=B \cos \omega t+C \sin \omega t$ into the differential equation gives

$$
M\left(-\omega^{2} B \cos \omega t-\omega^{2} C \sin \omega t\right)+\beta(-\omega B \sin \omega t+\omega C \cos \omega t)+k(B \cos \omega t+C \sin \omega t)=A \cos \omega t
$$

When we equate coefficients of $\cos \omega t$ and $\sin \omega t$, we obtain

$$
\left(k-M \omega^{2}\right) B+\beta \omega C=A, \quad-\beta \omega B+\left(k-M \omega^{2}\right) C=0 .
$$

The solution of these is $B=\frac{A\left(k-M \omega^{2}\right)}{\left(k-M \omega^{2}\right)^{2}+\beta^{2} \omega^{2}}, \quad C=\frac{A \beta \omega}{\left(k-M \omega^{2}\right)^{2}+\beta^{2} \omega^{2}}$. The particular solution is therefore

$$
x_{p}(t)=\frac{A}{\left(k-M \omega^{2}\right)^{2}+\beta^{2} \omega^{2}}\left[\left(k-M \omega^{2}\right) \cos \omega t+\beta \omega \sin \omega t\right] .
$$

(b) If we set $\left(k-M \omega^{2}\right) \cos \omega t+\beta \omega \sin \omega t=R \sin (\omega t+\phi)=R(\sin \omega t \cos \phi+\cos \omega t \sin \phi)$, and equate coefficients of $\sin \omega t$ and $\cos \omega t$,

$$
k-M \omega^{2}=R \sin \phi, \quad \beta \omega=R \cos \phi
$$

These imply that $R^{2}=\left(k-M \omega^{2}\right)^{2}+\beta^{2} \omega^{2}$. The amplitude of the steady-state part of the solution is therefore

$$
\frac{A}{\left(k-M \omega^{2}\right)^{2}+\beta^{2} \omega^{2}} \sqrt{\left(k-M \omega^{2}\right)^{2}+\beta^{2} \omega^{2}}=\frac{A}{\sqrt{\left(k-M \omega^{2}\right)^{2}+\beta^{2} \omega^{2}}}
$$

It is a maximum when $\left(k-M \omega^{2}\right)^{2}+\beta^{2} \omega^{2}$ is smallest. To determine the value of ω that yields the minimum, we solve

$$
0=2\left(k-M \omega^{2}\right)(-2 M \omega)+2 \beta^{2} \omega=2 \omega\left[-2 M\left(k-M \omega^{2}\right)+\beta^{2}\right]
$$

The nonzero solution is $\omega=\sqrt{k / M-\beta^{2} /\left(2 M^{2}\right)}$. The amplitude at this value of ω is

$$
\frac{A}{\sqrt{\left[k-M\left(\frac{k}{M}-\frac{\beta^{2}}{2 M^{2}}\right)\right]^{2}+\beta^{2}\left(\frac{k}{M}-\frac{\beta^{2}}{2 M^{2}}\right)}}=\frac{2 A M}{\beta \sqrt{4 k M-\beta^{2}}}
$$

14. (a) Suppose y measures the distance the mass moves after striking the platform. Then Newton's second law applied to the motion of the mass gives

$$
20 \frac{d^{2} y}{d t^{2}}=-1000 y-10 \frac{d y}{d t}+20 g
$$

When we divide by 10 and attach initial displacement and velocity, we obtain the initial-value problem

$$
2 \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+100 y=2 g, \quad y(0)=0, \quad y^{\prime}(0)=2
$$

The auxiliary equation $2 m^{2}+m+100=0$ has roots $m=(-1 \pm \sqrt{799} i) / 4$. Consequently, a general solution of the differential equation is

$$
y(t)=e^{-t / 4}\left(C_{1} \cos \frac{\sqrt{799} t}{4}+C_{2} \sin \frac{\sqrt{799} t}{4}\right)+\frac{g}{50} .
$$

The initial conditions require

$$
0=y(0)=C_{1}+\frac{g}{50}, \quad 2=y^{\prime}(0)=-\frac{C_{1}}{4}+\frac{\sqrt{799} C_{2}}{4} .
$$

These imply that $C_{1}=-g / 50$ and $C_{2}=(400-g) /(50 \sqrt{799})$, and therefore

$$
y(t)=e^{-t / 4}\left[-\frac{g}{50} \cos \frac{\sqrt{799} t}{4}+\left(\frac{400-g}{50 \sqrt{799}}\right) \sin \frac{\sqrt{799} t}{4}\right]+\frac{g}{50}
$$

(b) The maximum displacement experienced by the mass occurs when the mass comes to an instantaneous stop for the first time. We therefore set

$$
\begin{aligned}
0=\frac{d y}{d t}=- & \frac{1}{4} e^{-t / 4}\left[-\frac{g}{50} \cos \frac{\sqrt{799} t}{4}+\left(\frac{400-g}{50 \sqrt{799}}\right) \sin \frac{\sqrt{799} t}{4}\right] \\
& +e^{-t / 4}\left[\frac{\sqrt{799} g}{200} \sin \frac{\sqrt{799} t}{4}+\frac{\sqrt{799}}{4}\left(\frac{400-g}{50 \sqrt{799}}\right) \cos \frac{\sqrt{799} t}{4}\right]
\end{aligned}
$$

This equation implies that

$$
t=\frac{4}{\sqrt{799}} \operatorname{Tan}^{-1}\left(\frac{2}{\frac{400-g}{200 \sqrt{799}}-\frac{\sqrt{799} g}{200}}\right)=\frac{4}{\sqrt{799}}(-0.9883+n \pi)
$$

where n is an integer. The smallest positive solution occurs for $n=1$, and for this value of n, $t=0.3047 \mathrm{~s}$. The displacement of the mass at this time is $y(0.3047)=0.51 \mathrm{~m}$.
15. Suppose the mass of the chain is M so that its mass per unit length is M / a. When the length of chain hanging from the edge of the table is y, then

$$
M \frac{d^{2} y}{d t^{2}}=\frac{M g y}{a}
$$

This differential equation is subject to the initial conditions $y(0)=b$ and $y^{\prime}(0)=0$, provided $t=0$ is taken at the instant motion begins. The differential equation is linear with auxiliary equation $m^{2}-g / a=0 \Longrightarrow m= \pm \sqrt{g / a}$. A general solution is therefore $y(t)=C_{1} e^{\sqrt{g / a} t}+C_{2} e^{-\sqrt{g / a} t}$. The initial conditions require

$$
b=C_{1}+C_{2}, \quad 0=\sqrt{\frac{g}{a}} C_{1}-\sqrt{\frac{g}{a}} C_{2} \quad \Longrightarrow \quad C_{1}=C_{2}=b / 2 .
$$

Thus, $y(t)=\frac{b}{2}\left(e^{\sqrt{g / a} t}+e^{-\sqrt{g / a} t}\right)$. The chain slides off the table when $y=a$ in which case

$$
a=\frac{b}{2}\left(e^{\sqrt{g / a} t}+e^{-\sqrt{g / a} t}\right) \quad \Longrightarrow \quad e^{2 \sqrt{g / a} t}-\frac{2 a}{b} e^{\sqrt{g / a} t}+1=0 .
$$

This is a quadratic in $e^{\sqrt{g / a} t}$ with solutions

$$
e^{\sqrt{g / a} t}=\frac{2 a / b \pm \sqrt{4 a^{2} / b^{2}-4}}{2}=\frac{1}{b}\left(a \pm \sqrt{a^{2}-b^{2}}\right) \quad \Longrightarrow t=\sqrt{\frac{a}{g}} \ln \left(\frac{a \pm \sqrt{a^{2}-b^{2}}}{b}\right)
$$

It is straightforward to verify that $\left(a-\sqrt{a^{2}-b^{2}}\right) / b<1$ in which case t would be negative, an unacceptable value. Hence, $t=\sqrt{\frac{a}{g}} \ln \left(\frac{a+\sqrt{a^{2}-b^{2}}}{b}\right)$.
16. (a) Suppose the mass of the chain is M so that its mass per unit length is M / a. When the length of chain hanging from the edge of the table is b, the force of gravity on this much chain must be larger than the force of friction on that part of the chain still on the table,

$$
\left(\frac{b M}{a}\right) g>\mu_{s}\left[\frac{(a-b) M}{a}\right] g
$$

Thus, the smallest amount of hanging chain is $b=\mu_{s}(a-b)$.
(b) When the length of chain hanging from the edge of the table is y, then

$$
\frac{d^{2} y}{d t^{2}}=\frac{M g y}{a}-\frac{\mu_{k} M g}{a}(a-y) \quad \Longrightarrow \quad \frac{d^{2} y}{d t^{2}}-\frac{g}{a}\left(1+\mu_{k}\right) y=-\mu_{k} g
$$

This differential equation is subject to the initial conditions $y(0)=b$ and $y^{\prime}(0)=0$, provided $t=0$ is taken at the instant motion begins. The differential equation is linear with auxiliary equation $m^{2}-(g / a)\left(1+\mu_{k}\right)=0 \Longrightarrow m= \pm \sqrt{g\left(1+\mu_{k}\right) / a}$. A general solution is therefore $y(t)=C_{1} e^{\sqrt{g\left(1+\mu_{k}\right) / a} t}+C_{2} e^{-\sqrt{g\left(1+\mu_{k}\right) / a} t}+a \mu_{k} /\left(1+\mu_{k}\right)$. The initial conditions require
$b=C_{1}+C_{2}+\frac{a \mu_{k}}{1+\mu_{k}}, \quad 0=\sqrt{\frac{g\left(1+\mu_{k}\right)}{a}} C_{1}-\sqrt{\frac{g\left(1+\mu_{k}\right)}{a}} C_{2} \quad \Longrightarrow \quad C_{1}=C_{2}=\frac{1}{2}\left(b-\frac{a \mu_{k}}{1+\mu_{k}}\right)$.
Thus, $y(t)=\frac{1}{2}\left(b-\frac{a \mu_{k}}{1+\mu_{k}}\right)\left(e^{\sqrt{g\left(1+\mu_{k}\right) / a t}}+e^{-\sqrt{g\left(1+\mu_{k}\right) / a} t}\right)+\frac{a \mu_{k}}{1+\mu_{k}}$. The chain slides off the table when $y=a$,

$$
a=\frac{1}{2}\left(b-\frac{a \mu_{k}}{1+\mu_{k}}\right)\left(e^{\sqrt{g\left(1+\mu_{k}\right) / a} t}+e^{-\sqrt{g\left(1+\mu_{k}\right) / a} t}\right)+\frac{a \mu_{k}}{1+\mu_{k}},
$$

which can be expressed in the form

$$
e^{2 \sqrt{g\left(1+\mu_{k}\right) / a}}-\frac{2 a}{b\left(1+\mu_{k}\right)-a \mu_{k}} e^{\sqrt{g\left(1+\mu_{k}\right) / a} t}+1=0 .
$$

This is a quadratic in $e^{\sqrt{g\left(1+\mu_{k}\right) / a} t}$ with solutions
$e^{\sqrt{g\left(1+\mu_{k}\right) / a} t}=\frac{1}{2}\left[\frac{2 a}{b\left(1+\mu_{k}\right)-a \mu_{k}} \pm \sqrt{\frac{4 a^{2}}{\left[b\left(1+\mu_{k}\right)-a \mu_{k}\right]^{2}}-4}\right]=\frac{a \pm \sqrt{a^{2}-\left[b\left(1+\mu_{k}\right)-a \mu_{k}\right]^{2}}}{b\left(1+\mu_{k}\right)-a \mu_{k}}$,
and

$$
t=\sqrt{\frac{a}{g\left(1+\mu_{k}\right)}} \ln \left\{\frac{a \pm \sqrt{a^{2}-\left[b\left(1+\mu_{k}\right)-a \mu_{k}\right]^{2}}}{b\left(1+\mu_{k}\right)-a \mu_{k}}\right\} .
$$

It can be shown that the negative root leads to a value $t<0$. Hence,

$$
t=\sqrt{\frac{a}{g\left(1+\mu_{k}\right)}} \ln \left\{\frac{a+\sqrt{a^{2}-\left[b\left(1+\mu_{k}\right)-a \mu_{k}\right]^{2}}}{b\left(1+\mu_{k}\right)-a \mu_{k}}\right\} .
$$

17. Let us use the coordinate system of Figure 5.5 to measure the displacement of the mass. If s is the stretch in the spring at equilibrium, then when the mass is at position x, the stretch is $s-x+f(t)$. Newton's second law for the motion gives

$$
\frac{1}{2} \frac{d^{2} x}{d t^{2}}=-10 \frac{d x}{d t}-\frac{g}{2}+250[s-x+f(t)]
$$

At equilibrium, $-g / 2+250 s=$, so that

$$
\frac{1}{2} \frac{d^{2} x}{d t^{2}}=-10 \frac{d x}{d t}+250[-x+f(t)] \quad \Longrightarrow \quad \frac{d^{2} x}{d t^{2}}+20 \frac{d x}{d t}+500 x=50 \sin 2 t
$$

subject to $x(0)=x^{\prime}(0)=0$. The auxiliary equation is $m^{2}+20 m+500=0$ with solutions $m=-10 \pm 5 \sqrt{6} i$. A general solution of the associated homogeneous equation is therefore $x_{h}(t)=$ $e^{-10 t}\left(C_{1} \cos 5 \sqrt{6} t+C_{2} \sin 5 \sqrt{6} t\right)$. When we substitute a particular solution of the form $x_{p}(t)=$ $A \sin 2 t+B \cos 2 t$ into the differential equation, we obtain

$$
(-4 A \sin 2 t-4 B \cos 2 t)+20(2 A \cos 2 t-2 B \sin 2 t)+500(A \sin 2 t+B \cos 2 t)=50 \sin 2 t
$$

Equating coeffcients to zero gives

$$
496 A-40 B=50, \quad 40 A+496 B=0
$$

the solution of which is $A=1550 / 15,446$ and $B=-125 / 15446$. A general solution of the nonhomogeneous differential equation is

$$
x(t)=e^{-10 t}\left(C_{1} \cos 5 \sqrt{6} t+C_{2} \sin 5 \sqrt{6} t\right)+\frac{1550}{15446} \sin 2 t-\frac{125}{15446} \cos 2 t
$$

The initial conditions require

$$
0=x(0)=C_{1}-\frac{125}{15446}, \quad 0=x^{\prime}(0)=-10 C_{1}+5 \sqrt{6} C_{2}+\frac{1550}{7723}
$$

These give $C_{2}=370 /(15446 \sqrt{6})$. Thus, the position of the mass is given by

$$
x(t)=e^{-10 t}\left(\frac{125}{15446} \cos 5 \sqrt{6} t+\frac{370}{15446 \sqrt{6}} \sin 5 \sqrt{6} t\right)+\frac{1550}{15446} \sin 2 t-\frac{125}{15446} \cos 2 t
$$

A plot of this function is shown to the right. The damping is so severe that the transient terms disappear almost immediately. The steadystate terms of the particular solution persist forever. The mass oscillates at the same frequency as the motion of the upper support, but with a slightly smaller amplitude, and out of phase with it.

18. The initial-value problem describing the position $x(t)$ of the mass from the time it starts until it comes to a stop for the first time is

$$
M \frac{d^{2} x}{d t^{2}}+k x=-\mu M g, \quad x(0)=x_{0}, \quad x^{\prime}(0)=v_{0}
$$

The auxiliary equation is $M m^{2}+k=0$ with solutions $m= \pm \sqrt{k / M} i$, and therefore $x(t)=$ $C_{1} \cos \sqrt{k / M} t+C_{2} \sin \sqrt{k / M} t-\mu M g / k$. To satisfy the initial conditions, we must have $x_{0}=$ $C_{1}-\mu M g / k$ and $v_{0}=\sqrt{k / M} C_{2}$. Thus,

$$
x(t)=\left(x_{0}+\frac{\mu M g}{k}\right) \cos \sqrt{\frac{k}{M}} t+\sqrt{\frac{M}{k}} v_{0} \sin \sqrt{\frac{k}{M}} t .
$$

The mass comes to a stop for the first time when

$$
0=x^{\prime}(t)=-\sqrt{\frac{k}{M}}\left(x_{0}+\frac{\mu M g}{k}\right) \sin \sqrt{\frac{k}{M}} t+v_{0} \cos \sqrt{\frac{k}{M}} t
$$

We can rewrite this equation in the form

$$
\tan \sqrt{\frac{k}{M}} t=\frac{v_{0}}{\sqrt{k / M}\left(x_{0}+\mu M g / k\right)} \quad \Longrightarrow \quad t=\sqrt{\frac{M}{k}}\left[\operatorname{Tan}^{-1}\left(\frac{v_{0} \sqrt{M / k}}{x_{0}+\mu M g / k}\right)+n \pi\right]
$$

where n is an integer. For the smallest positive solution we choose $n=0$.
19. The initial-value problem describing the position $x(t)$ of the mass from the time it starts until it comes to a stop for the first time is

$$
M \frac{d^{2} x}{d t^{2}}+k x=\mu M g, \quad x(0)=x_{0}, \quad x^{\prime}(0)=v_{0}
$$

where $v_{0}<0$. The auxiliary equation is $M m^{2}+k=0$ with solutions $m= \pm \sqrt{k / M} i$, and therefore $x(t)=C_{1} \cos \sqrt{k / M} t+C_{2} \sin \sqrt{k / M} t+\mu M g / k$. To satisfy the initial conditions, we must have $x_{0}=C_{1}+\mu M g / k$ and $v_{0}=\sqrt{k / M} C_{2}$. Thus,

$$
x(t)=\left(x_{0}-\frac{\mu M g}{k}\right) \cos \sqrt{\frac{k}{M}} t+\sqrt{\frac{M}{k}} v_{0} \sin \sqrt{\frac{k}{M}} t .
$$

The mass comes to a stop for the first time when

$$
0=x^{\prime}(t)=-\sqrt{\frac{k}{M}}\left(x_{0}-\frac{\mu M g}{k}\right) \sin \sqrt{\frac{k}{M}} t+v_{0} \cos \sqrt{\frac{k}{M}} t
$$

Except when $x_{0}=\mu M g / k$, we can rewrite this equation in the form

$$
\tan \sqrt{\frac{k}{M}} t=\frac{v_{0}}{\sqrt{k / M}\left(x_{0}-\mu M g / k\right)} \quad \Longrightarrow \quad t=\sqrt{\frac{M}{k}}\left[\operatorname{Tan}^{-1}\left(\frac{v_{0} \sqrt{M / k}}{x_{0}-\mu M g / k}\right)+n \pi\right]
$$

where n is an integer. For the smallest positive solution, we obtain

$$
t= \begin{cases}\sqrt{\frac{M}{k}} \operatorname{Tan}^{-1}\left(\frac{v_{0} \sqrt{M / k}}{x_{0}-\mu M g / k}\right), & \text { when } x_{0}<\mu M g / k \\ \sqrt{\frac{M}{k}} \frac{\pi}{2}, & \text { when } x_{0}=\mu M g / k \\ \sqrt{\frac{M}{k}}\left[\operatorname{Tan}^{-1}\left(\frac{v_{0} \sqrt{M / k}}{x_{0}-\mu M g / k}\right)+\pi\right], & \text { when } x_{0}>\mu M g / k\end{cases}
$$

20. If $y>0$ is the depth of the bottom surface of the cube, then Newton's second law from time $t=0$ when the cube is released until it is completely submerged gives

$$
1200 \frac{d^{2} y}{d t^{2}}=1200 g-2 \frac{d y}{d t}-y(1)^{2}(1000) g \quad \Longrightarrow \quad 600 \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+500 g y=600 g
$$

subject to $y(0)=0$ and $y^{\prime}(0)=0$. The auxiliary equation is

$$
600 m^{2}+m+500 g=0 \quad \text { with solution } \quad m=\frac{-1 \pm \sqrt{1-1200000}}{1200}=\frac{-1 \pm \sqrt{1199999} i}{1200}
$$

If we set $\omega=\sqrt{1199999} / 1200$, then a general solution of the differential equation is

$$
y(t)=e^{-t / 1200}\left(C_{1} \cos \omega t+C_{2} \sin \omega t\right)+\frac{6}{5}
$$

The initial conditions require

$$
0=y(0)=C_{1}+\frac{6}{5}, \quad 0=y^{\prime}(0)=-\frac{C_{1}}{1200}+\omega C_{2}
$$

These give $C_{1}=-6 / 5$ and $C_{2}=-1 /(1000 \omega)$, and therefore

$$
y(t)=\frac{6}{5}-\frac{e^{-t / 1200}}{1000 \omega}(1200 \omega \cos \omega t+\sin \omega t)
$$

This is valid as long as $y \leq 1$. When $y=1$,

$$
1=\frac{6}{5}-\frac{e^{-t / 1200}}{1000 \omega}(1200 \omega \cos \omega t+\sin \omega t)
$$

the numerical solution of which is $t=1.54 \mathrm{~s}$.
A plot of $y(t)$ for $0 \leq t \leq 1.54$ is shown to the right.

21. If $y>0$ is the depth of the bottom surface of the cube, then Newton's second law from time $t=0$ when the cube is released gives

$$
500 \frac{d^{2} y}{d t^{2}}=500 g-2 \frac{d y}{d t}-y(1)^{2}(1000) g \quad \Longrightarrow \quad 250 \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+500 g y=250 g
$$

subject to $y(0)=0$ and $y^{\prime}(0)=0$. The auxiliary equation is

$$
250 m^{2}+m+500 g=0 \quad \text { with solution } \quad m=\frac{-1 \pm \sqrt{1-500000}}{500}=\frac{-1 \pm \sqrt{499999} i}{500}
$$

If we set $\omega=\sqrt{499999} / 500$, then a general solution of the differential equation is

$$
y(t)=e^{-t / 500}\left(C_{1} \cos \omega t+C_{2} \sin \omega t\right)+\frac{1}{2}
$$

The initial conditions require

$$
0=y(0)=C_{1}+\frac{1}{2}, \quad 0=y^{\prime}(0)=-\frac{C_{1}}{500}+\omega C_{2}
$$

These give $C_{1}=-1 / 2$ and $C_{2}=-1 /(1000 \omega)$, and therefore

$$
y(t)=\frac{1}{2}-\frac{e^{-t / 500}}{1000 \omega}(500 \omega \cos \omega t+\sin \omega t)
$$

A plot of this function is shown to the right.

22. (a) If x is the length of the longer piece of cable, then Newton's second law for acceleration of the cable is

$$
25 \rho \frac{d^{2} x}{d t^{2}}=9.81 \rho z
$$

where ρ is the mass per unit length of the cable, and z is as shown in the figure to the right. Since $x+(x-z)=25$, it follows that $z=2 x-25$ and

$$
25 \frac{d^{2} x}{d t^{2}}=9.81(2 x-25)
$$

or,

$$
25 \frac{d^{2} x}{d t^{2}}-19.62 x=-245.25
$$

The auxiliary equation $25 m^{2}-19.62=0$ has roots $\pm \sqrt{19.62 / 25}$. If we denote the positive by root m, then $x(t)=C_{1} e^{m t}+C_{2} e^{-m t}+245.25 / 19.62$. The initial conditions $x(0)=15$ and $x^{\prime}(0)=0$ require $15=C_{1}+C_{2}+245.25 / 19.62$ and $0=m C_{1}-m C_{2}$. These imply that $C_{1}=C_{2}=1.25$. The cable slides off the peg when $25=1.25\left(e^{m t}+e^{-m t}\right)+245.25 / 19.62$ and the solution of this equation is 2.59 s .
(b) In this case Newton's second is

$$
25 \rho \frac{d^{2} x}{d t^{2}}=9.81 \rho z-9.81 \rho \quad \Longrightarrow \quad 25 \frac{d^{2} x}{d t^{2}}-19.62 x=-255.06
$$

The solution of this differential equation is $x(t)=C_{1} e^{m t}+C_{2} e^{-m t}+255.06 / 19.62$, where m is as in part (a). The initial conditions require $15=C_{1}+C_{2}+255.06 / 19.62$ and $0=m C_{1}-m C_{2}$, and these gives $C_{1}=C_{2}=1$. The cable slides off the peg when $25=e^{m t}+e^{-m t}+255.06 / 19.62$ and the solution of this equation is 2.80 s .

