Values

1. Determine whether the following series converges or diverges. Justify your answer.

$$
\sum_{n=2}^{\infty}(-1)^{n}\left(\frac{n+1}{n}\right)^{n}
$$

Since $\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$, it follows that

$$
\lim _{n \rightarrow \infty}\left[(-1)^{n}\left(\frac{n+1}{n}\right)^{n}\right] \quad \text { does not exist. }
$$

Hence, the series diverges by the $n^{\text {th }}$-term test.
2. Find the open interval of convergence for the power series

$$
\sum_{n=14}^{\infty} \frac{n^{2}}{e^{n}}(x+1)^{2 n}
$$

Determine, with justification, whether the series converges at its right endpoint.

If we set $y=(x+1)^{2}$, the series becomes $\sum_{n=14}^{\infty} \frac{n^{2}}{e^{n}} y^{n}$. The radius of convergence of this series is

$$
R_{y}=\lim _{n \rightarrow \infty}\left|\frac{\frac{n^{2}}{e^{n}}}{\frac{(n+1)^{2}}{e^{n+1}}}\right|=e .
$$

The radius of convergence of the original series is therefore $R_{x}=\sqrt{e}$. Its open interval of convergence is

$$
|x+1|<\sqrt{e} \quad \Longrightarrow \quad-\sqrt{e}<x+1<\sqrt{e} \quad \Longrightarrow \quad-1-\sqrt{e}<x<-1+\sqrt{e} .
$$

At the right endpoint $x=-1+\sqrt{e}$, the series becomes

$$
\sum_{n=14}^{\infty} \frac{n^{2}}{e^{n}}(\sqrt{e})^{2 n}=\sum_{n=14}^{\infty} n^{2}
$$

Since the $\lim _{n \rightarrow \infty}\left(n^{2}\right)=\infty$, this series diverges by the $n^{\text {th }}$-term test.

9 3. Find the Taylor series about $x=4$ for the function

$$
\frac{(x-4)^{2}}{(x+5)^{2}}
$$

Write your answer in sigma notation simplified as much as possible. You must use a method that guarantees that the series converges to the function. What is the interval of convergence of the series?
x-4

$$
\frac{1}{x+5}=\frac{1}{(x-4)+9}=\frac{1 / 9}{1+\left(\frac{x-4}{9}\right)}=\frac{1}{9} \sum_{n=0}^{\infty}\left[-\left(\frac{x-4}{9}\right)\right]^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{9^{n+1}}(x-4)^{n}
$$

valid for

$$
\left|-\left(\frac{x-4}{9}\right)\right|<1 \quad \Longrightarrow \quad|x-4|<9 \quad \Longrightarrow \quad-9<x-4<9 \quad \Longrightarrow \quad-5<x<13 .
$$

Since the series has a positive radius of convergence, we can differentiate the series term-by-term

$$
\frac{-1}{(x+5)^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} n}{9^{n+1}}(x-4)^{n-1} .
$$

Multiplication by $-(x-4)^{2}$ gives

$$
\frac{(x-4)^{2}}{(x+5)^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1} n}{9^{n+1}}(x-4)^{n+1}=\sum_{n=2}^{\infty} \frac{(-1)^{n}(n-1)}{9^{n}}(x-4)^{n} .
$$

Since differentiation of a series never picks up an end point of the open interval of convergence, the interval of convergence is $-5<x<13$.
4. Find the sum of the series

$$
\sum_{n=1}^{\infty} n(-1)^{n}(x-1)^{n}
$$

The radius of convergence of the series is

$$
R=\lim _{n \rightarrow \infty}\left|\frac{n(-1)^{n}}{(n+1)(-1)^{n+1}}\right|=1
$$

If we set $S(x)=\sum_{n=1}^{\infty} n(-1)^{n}(x-1)^{n}$, then

$$
\frac{S(x)}{x-1}=\sum_{n=1}^{\infty} n(-1)^{n}(x-1)^{n-1}, \quad(x \neq 1)
$$

Since the series has a positive radius of convergence, we can integrate the series term-by-term

$$
\int \frac{S(x)}{x-1} d x=\sum_{n=1}^{\infty}(-1)^{n}(x-1)^{n}+C=\frac{-(x-1)}{1+(x-1)}+C=\frac{1-x}{x}+C .
$$

Differentiation gives

$$
\frac{S(x)}{x-1}=\frac{x(-1)-(1-x)}{x^{2}}=-\frac{1}{x^{2}} \quad \Longrightarrow \quad S(x)=\frac{1-x}{x^{2}} .
$$

When $x=1$, the sum of the series is zero. Since $S(1)=0$ also, we can say that

$$
S(x)=\frac{1-x}{x^{2}},
$$

valid for $|x-1|<1 \quad \Longrightarrow \quad 0<x<2$.

