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MATH2132 Testl October 8, 2020 60 minutes

1. Determine whether the following series converges or diverges. Justify your answer.
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Hence, the series diverges by the n*"-term test.

. Find the open interval of convergence for the power series
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Determine, with justification, whether the series converges at its right endpoint.
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If we set y = (z + 1), the series becomes g —y". The radius of convergence of this series is
e

n=14
n2
. n
R, = lim 672 =e
n—oo | (n+1)
en+1

The radius of convergence of the original series is therefore R, = y/e. Its open interval of conver-
gence is

lr+1l<ve = —Ve<zrz+l<ye = -—-1-Ve<az<-1+ /e
At the right endpoint x = —1 4 /e, the series becomes
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Since the lim (n?) = oo, this series diverges by the n''-term test.
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3. Find the Taylor series about x = 4 for the function

(z —4)?
(x+5)2
Write your answer in sigma notation simplified as much as possible. You must use a method that

guarantees that the series converges to the function. What is the interval of convergence of the
series?
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valid for
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—<x >'<1 — Jr-4/<9 = -9<z-4<9 = -5<z<Il3.

Since the series has a positive radius of convergence, we can differentiate the series term-by-term
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Multiplication by —(z — 4)? gives
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Since differentiation of a series never picks up an end point of the open interval of convergence,
the interval of convergence is —5 < x < 13.

. Find the sum of the series
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The radius of convergence of the series is
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If we set S(z Z n( (z —1)", then
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S((IZ) . n n—1
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Since the series has a positive radius of convergence, we can integrate the series term-by-term
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Differentiation gives

S(x) _$(—1)—(1—$):_i . S(az)zl_ZE.

r—1 x x?
When x = 1, the sum of the series is zero. Since S(1) = 0 also, we can say that
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S(x) =
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valid for |z — 1] <1 = 0<z<2.



