Values

8 1. Find the interval of convergence and the sum of the series

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{2^{n}}(3 x-1)^{n}
$$

It is not necessary to simplify the expression for the sum.

Writing the series in the form

$$
\sum_{n=2}^{\infty}-\left[-\frac{1}{2}(3 x-1)\right]^{n}
$$

shows that it is geometric. Its sum is

$$
\frac{-\frac{1}{4}(3 x-1)^{2}}{1+\frac{1}{2}(3 x-1)}
$$

and the interval of convergence is

$$
\left|-\frac{1}{2}(3 x-1)\right|<1 \quad \Longrightarrow \quad-2<3 x-1<2 \quad \Longrightarrow \quad-1<3 x<3 \quad \Longrightarrow \quad-\frac{1}{3}<x<1 \text {. }
$$

6
2. Determine whether the series

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n} a^{n}}{n^{2}}, \quad a \geq 2 \text { a constant }
$$

converges or diverges. Justify all conclusions.

Consider the sequence $\left\{\frac{a^{n}}{n^{2}}\right\}$. To determine its limit as $n \rightarrow \infty$, we use L'Hospital's rule on the limit

$$
\lim _{x \rightarrow \infty} \frac{a^{x}}{x^{2}}=\lim _{x \rightarrow \infty} \frac{a^{x}(\ln a)}{2 x}=\lim _{x \rightarrow \infty} \frac{a^{x}(\ln a)^{2}}{2}=\infty .
$$

Consequently, $\lim _{n \rightarrow \infty} \frac{(-1)^{n} a^{n}}{n^{2}}$ does not exist. The series therefore diverges by the $n^{\text {th }}$-term test.

14 3. Find the Taylor series about $x=1$ for the function

$$
\frac{1}{\sqrt{5 x-1}}
$$

Write your answer in sigma notation simplified as much as possible. You must use a method that guarantees that the series converges to the function. What is the radius of convergence of the series?
$x-1$

$$
\begin{aligned}
\frac{1}{\sqrt{5 x-1}}= & \frac{1}{\sqrt{5(x-1)+4}}=\frac{1}{2}\left[1+\frac{5}{4}(x-1)\right]^{-1 / 2} \\
= & \frac{1}{2}\left\{1+(-1 / 2)\left[\frac{5}{4}(x-1)\right]+\frac{(-1 / 2)(-3 / 2)}{2!}\left[\frac{5}{4}(x-1)\right]^{2}\right. \\
& \left.+\frac{(-1 / 2)(-3 / 2)(-5 / 2)}{3!}\left[\frac{5}{4}(x-1)\right]^{3}+\cdots\right\} \\
= & \frac{1}{2}\left\{1-\frac{5}{2 \cdot 4}(x-1)+\frac{(1 \cdot 3) 5^{2}}{2^{2} 2!4^{2}}(x-1)^{2}-\frac{(1 \cdot 3 \cdot 5) 5^{3}}{2^{3} 3!4^{3}}(x-1)^{3}+\cdots\right\} \\
= & \frac{1}{2}\left\{1+\sum_{n=1}^{\infty} \frac{(-1)^{n} 5^{n}[1 \cdot 3 \cdot 5 \cdots(2 n-1)]}{2^{n} n!4^{n}}(x-1)^{n}\right\} \\
= & \frac{1}{2}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n} 5^{n}(2 n)!}{2^{n} 2^{2 n} 2^{n} n!n!}(x-1)^{n} \\
= & \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n}(2 n)!}{2^{4 n+1}(n!)^{2}}(x-1)^{n}
\end{aligned}
$$

This is valid for $\left|\frac{5}{4}(x-1)\right|<1 \quad \Longrightarrow \quad|x-1|<\frac{4}{5}$. The radius of convergence is $4 / 5$.

$$
f(x)=\frac{1}{1+4 x}
$$

are used as an approximation to the function on the interval $0 \leq x \leq 0.1$, what is the maximum possible error? Justify all conclusions.

The Maclaurin series for the function is

$$
f(x)=\sum_{n=0}^{\infty}(-4 x)^{n}=1-4 x+16 x^{2}-64 x^{3}+256 x^{4}+\cdots
$$

When values of x in the interval $0 \leq x \leq 0.1$ are substituted into the series, the series is alternating. Absolute values of terms in the series are $\left\{4^{n} x^{n}\right\}$. The largest value of x is 0.1 , and for this value, terms are $\left\{4^{n} / 10^{n}\right\}$ which decrease and approach 0 . Smaller values of x do likewise. The series therefore passes the alternating series test, and when the series is truncated after the fourth term, the maximum error is the next term. The maximum error is therfore

$$
256 x^{4} \leq 256(0.1)^{4}=0.0256
$$

Alternatively, when the series is truncated after the term in x^{3}, Taylor's remainder formula gives the error

$$
\left|R_{3}(0, x)\right|=\left|\frac{f^{(4)}\left(z_{3}\right) x^{4}}{4!}\right|=\left|\frac{6144}{\left(1+4 z_{3}\right)^{5}} \frac{x^{4}}{4!}\right| \leq \frac{6144}{(1+0)^{5}} \frac{x^{4}}{4!} \leq \frac{6144(0.1)^{4}}{4!}=0.0256
$$

