Values

10

1. Find the interval of convergence for the series

$$
\sum_{n=4}^{\infty} \frac{n^{2} 3^{n}}{n^{2}+1}(x+3)^{2 n}
$$

Justify all conclusions.

When we set $y=(x+3)^{2}$, the series becomes $\sum_{n=4}^{\infty} \frac{n^{2} 3^{n}}{n^{2}+1} y^{n}$. The radius of convergence of this series is

$$
R_{y}=\lim _{n \rightarrow \infty}\left|\frac{\frac{n^{2} 3^{n}}{n^{2}+1}}{\frac{(n+1)^{2} 3^{n+1}}{(n+1)^{2}+1}}\right|=\frac{1}{3} .
$$

Hence, $R_{x}=1 / \sqrt{3}$, and the open interval of convergence is

$$
-\frac{1}{\sqrt{3}}<x+3<\frac{1}{\sqrt{3}} \quad \Longrightarrow \quad-3-\frac{1}{\sqrt{3}}<x<-3+\frac{1}{\sqrt{3}} .
$$

At the end points, the series becomes

$$
\sum_{n=4}^{\infty} \frac{n^{2} 3^{n}}{n^{2}+1}\left(\pm \frac{1}{\sqrt{3}}\right)^{2 n}=\sum_{n=4}^{\infty} \frac{n^{2}}{n^{2}+1}
$$

Since $\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}=1$, this series diverges by the $n^{\text {th }}$-term test. The interval of convergence is therefore $-3-\frac{1}{\sqrt{3}}<x<-3+\frac{1}{\sqrt{3}}$.
2. Determine whether the series

$$
\sum_{n=3}^{\infty} \frac{(-1)^{n} 2^{n+5}}{e^{n-1}}
$$

converges or diverges. Justify your answer. If the series converges, find its sum.

Since we can write the series in the form $\sum_{n=3}^{\infty} \frac{2^{5}}{e^{-1}}\left(-\frac{2}{e}\right)^{n}$, we see that it is geometric with common ratio $-2 / e$. Since this is between -1 and 1 , the series converges, and has sum

$$
\frac{\frac{(-1)^{3} 2^{8}}{e^{2}}}{1+2 / e}
$$

5 3. Find the limit of the sequence of functions $\left\{\frac{n^{2} x^{3}+n x^{2}+5}{2 n^{2} x^{3}+3}\right\}$ on the interval $-2 \leq x \leq 0$, if it exists. If the limit does not exist, explain why not.

$$
\lim _{n \rightarrow \infty} \frac{n^{2} x^{3}+n x^{2}+5}{2 n^{2} x^{3}+3}=\lim _{n \rightarrow \infty} \frac{x^{3}+x^{2} / n+5 / n^{2}}{2 x^{3}+3 / n^{2}}=\frac{x^{3}}{2 x^{3}}=\frac{1}{2},
$$

provided $x \neq 0$. At $x=0$, terms in the sequence are all equal to $5 / 3$ so that the limit at $x=0$ is $5 / 3$. Thus,

$$
\lim _{n \rightarrow \infty} \frac{n^{2} x^{3}+n x^{2}+5}{2 n^{2} x^{3}+3}= \begin{cases}1 / 2, & -2 \leq x<0 \\ 5 / 3, & x=0 .\end{cases}
$$

4. You are given that the Taylor remainder about $x=0$ for a function $f(x)$ on the interval $0 \leq x \leq 2$ is

$$
R_{n}(0, x)=\frac{z_{n}}{\left(5-z_{n}\right)^{n}} \frac{x^{n+1}}{(n+1)!} .
$$

Show that $\lim _{n \rightarrow \infty} R_{n}(0, x)=0$. Explain your reasoning.

$$
\left|R_{n}(0, x)\right|=\frac{\left|z_{n}\right|}{\left|5-z_{n}\right|^{n}} \frac{|x|^{n+1}}{(n+1)!}, \quad \text { where } 0<z_{n}<x \leq 2 .
$$

Since the numerator of $\frac{\left|z_{n}\right|}{\left|5-z_{n}\right|^{n}}$ is largest when $\left|z_{n}\right|$ is largest, and the denominator $\left|5-z_{n}\right|^{n}$ is smallest when z_{n} is largest, we can say that

$$
\left\lvert\, R_{n}(0, x)<\frac{2}{(5-2)^{n}} \frac{|x|^{n+1}}{(n+1)!}=2 \frac{|x / 3|^{n}}{(n+1)!}\right.
$$

This approaches 0 as $n \rightarrow \infty$. Hence,

$$
\lim _{n \rightarrow \infty} R_{n}(0, x)=0
$$

15 5. Find the Taylor series about $x=-2$ for the function

$$
f(x)=\frac{x+2}{\sqrt{x+3}} .
$$

Write your answer in sigma notation simplified as much as possible. You must use a method that guarantees that the series converges to the function. What is the radius of convergence of the series?
$x+2$

$$
\begin{aligned}
\frac{1}{\sqrt{x+3}} & =\frac{1}{\sqrt{1+(x+2)}}=[1+(x+2)]^{-1 / 2} \\
& =1+(-1 / 2)(x+2)+\frac{(-1 / 2)(-3 / 2)}{2!}(x+2)^{2}+\frac{(-1 / 2)(-3 / 2)(-5 / 2)}{3!}(x+2)^{3}+\cdots \\
& =1+\sum_{n=1}^{\infty} \frac{(-1)^{n}[1 \cdot 3 \cdot 5 \cdots(2 n-1)]}{2^{n} n!}(x+2)^{n} \\
& =1+\sum_{n=1}^{\infty} \frac{(-1)^{n}[1 \cdot 2 \cdot 3 \cdot 4 \cdots(2 n)]}{2^{n} n![2 \cdot 4 \cdots(2 n)]}(x+2)^{n} \\
& =1+\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 n)!}{n!2^{2 n} n!}(x+2)^{n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n)!}{2^{2 n}(n!)^{2}}(x+2)^{n}
\end{aligned}
$$

Thus,

$$
\frac{x+2}{\sqrt{x+3}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n)!}{2^{2 n}(n!)^{2}}(x+2)^{n+1}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(2 n-2)!}{2^{2 n-2}[(n-1)!]^{2}}(x+2)^{n} .
$$

This is valid for $|x+2|<1$ which implies that the radius of convergence is 1 .

