October 13, 2022

60 minutes

Values

10 1. Find the interval of convergence for the series

$$\sum_{n=4}^{\infty} \frac{n^2 3^n}{n^2 + 1} (x+3)^{2n}.$$

Justify all conclusions.

When we set $y = (x+3)^2$, the series becomes $\sum_{n=4}^{\infty} \frac{n^2 3^n}{n^2 + 1} y^n$. The radius of convergence of this series is

$$R_y = \lim_{n \to \infty} \left| \frac{\frac{n^2 3^n}{n^2 + 1}}{\frac{(n+1)^2 3^{n+1}}{(n+1)^2 + 1}} \right| = \frac{1}{3}.$$

Hence, $R_x = 1/\sqrt{3}$, and the open interval of convergence is

$$-\frac{1}{\sqrt{3}} < x + 3 < \frac{1}{\sqrt{3}} \implies -3 - \frac{1}{\sqrt{3}} < x < -3 + \frac{1}{\sqrt{3}}$$

At the end points, the series becomes

$$\sum_{n=4}^{\infty} \frac{n^2 3^n}{n^2 + 1} \left(\pm \frac{1}{\sqrt{3}} \right)^{2n} = \sum_{n=4}^{\infty} \frac{n^2}{n^2 + 1}.$$

Since $\lim_{n \to \infty} \frac{n^2}{n^2 + 1} = 1$, this series diverges by the n^{th} -term test. The interval of convergence is therefore $-3 - \frac{1}{\sqrt{3}} < x < -3 + \frac{1}{\sqrt{3}}$.

5 2. Determine whether the series

$$\sum_{n=3}^{\infty} \frac{(-1)^n 2^{n+5}}{e^{n-1}}$$

converges or diverges. Justify your answer. If the series converges, find its sum.

Since we can write the series in the form $\sum_{n=3}^{\infty} \frac{2^5}{e^{-1}} \left(-\frac{2}{e}\right)^n$, we see that it is geometric with common ratio -2/e. Since this is between -1 and 1, the series converges, and has sum

$$\frac{\frac{(-1)^3 2^8}{e^2}}{1+2/e}.$$

5 3. Find the limit of the sequence of functions $\left\{\frac{n^2x^3 + nx^2 + 5}{2n^2x^3 + 3}\right\}$ on the interval $-2 \le x \le 0$, if it exists. If the limit does not exist, explain why not.

$$\lim_{n \to \infty} \frac{n^2 x^3 + nx^2 + 5}{2n^2 x^3 + 3} = \lim_{n \to \infty} \frac{x^3 + x^2/n + 5/n^2}{2x^3 + 3/n^2} = \frac{x^3}{2x^3} = \frac{1}{2}$$

provided $x \neq 0$. At x = 0, terms in the sequence are all equal to 5/3 so that the limit at x = 0 is 5/3. Thus,

$$\lim_{n \to \infty} \frac{n^2 x^3 + nx^2 + 5}{2n^2 x^3 + 3} = \begin{cases} 1/2, & -2 \le x < 0\\ 5/3, & x = 0. \end{cases}$$

5 4. You are given that the Taylor remainder about x = 0 for a function f(x) on the interval $0 \le x \le 2$ is

$$R_n(0,x) = \frac{z_n}{(5-z_n)^n} \frac{x^{n+1}}{(n+1)!}$$

Show that $\lim_{n \to \infty} R_n(0, x) = 0$. Explain your reasoning.

$$|R_n(0,x)| = \frac{|z_n|}{|5 - z_n|^n} \frac{|x|^{n+1}}{(n+1)!}, \quad \text{where } 0 < z_n < x \le 2$$

Since the numerator of $\frac{|z_n|}{|5-z_n|^n}$ is largest when $|z_n|$ is largest, and the denominator $|5-z_n|^n$ is smallest when z_n is largest, we can say that

$$|R_n(0,x)| < \frac{2}{(5-2)^n} \frac{|x|^{n+1}}{(n+1)!} = 2\frac{|x/3|^n}{(n+1)!}$$

This approaches 0 as $n \to \infty$. Hence,

$$\lim_{n \to \infty} R_n(0, x) = 0.$$

15 5. Find the Taylor series about x = -2 for the function

$$f(x) = \frac{x+2}{\sqrt{x+3}}.$$

Write your answer in sigma notation simplified as much as possible. You must use a method that guarantees that the series converges to the function. What is the radius of convergence of the series?

x+2

$$\begin{aligned} \frac{1}{\sqrt{x+3}} &= \frac{1}{\sqrt{1+(x+2)}} = [1+(x+2)]^{-1/2} \\ &= 1+(-1/2)(x+2) + \frac{(-1/2)(-3/2)}{2!}(x+2)^2 + \frac{(-1/2)(-3/2)(-5/2)}{3!}(x+2)^3 + \cdots \\ &= 1+\sum_{n=1}^{\infty} \frac{(-1)^n [1\cdot 3\cdot 5\cdots (2n-1)]}{2^n n!}(x+2)^n \\ &= 1+\sum_{n=1}^{\infty} \frac{(-1)^n [1\cdot 2\cdot 3\cdot 4\cdots (2n)]}{2^n n! [2\cdot 4\cdots (2n)]}(x+2)^n \\ &= 1+\sum_{n=1}^{\infty} \frac{(-1)^n (2n)!}{n! 2^{2n} n!}(x+2)^n \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{2^{2n} (n!)^2}(x+2)^n \end{aligned}$$

Thus,

$$\frac{x+2}{\sqrt{x+3}} = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{2^{2n} (n!)^2} (x+2)^{n+1} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} (2n-2)!}{2^{2n-2} [(n-1)!]^2} (x+2)^n.$$

This is valid for |x+2| < 1 which implies that the radius of convergence is 1.