Values

14 1. Find the interval of convergence for the series

$$
\sum_{n=3}^{\infty} \frac{\sqrt{n}}{3^{n+1}}(x+1)^{2 n}
$$

Justify all conclusions.

If we set $y=(x+1)^{2}$, the series becomes $\sum_{n=3}^{\infty} \frac{\sqrt{n}}{3^{n+1}} y^{n}$.

$$
R_{y}=\lim _{n \rightarrow \infty}\left|\frac{\frac{\sqrt{n}}{3^{n+1}}}{\frac{\sqrt{n+1}}{3^{n+2}}}\right|=3 .
$$

Hence, $R_{x}=\sqrt{3}$, and the open interval of convergence is $-\sqrt{3}<x+1<\sqrt{3}$, or $-1-\sqrt{3}<x<$ $-1+\sqrt{3}$. At the end points, the series becomes

$$
\sum_{n=3}^{\infty} \frac{\sqrt{n}}{3^{n+1}}(\pm \sqrt{3})^{2 n}=\sum_{n=3}^{\infty} \frac{\sqrt{n}}{3} .
$$

Since $\lim _{n \rightarrow \infty} \sqrt{n} / 3=\infty$, the series diverges (by the $n^{\text {th }}$-term test). The interval of convergence is therefore $-1-\sqrt{3}<x<-1+\sqrt{3}$

11 2. Find the interval of convergence and the sum of the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^{n+3}}{n!} x^{2 n+1}
$$

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^{n+3}}{n!} x^{2 n+1} & =\sum_{n=1}^{\infty} \frac{-8 x\left(-2 x^{2}\right)^{n}}{n!}=-8 x\left[\sum_{n=0}^{\infty} \frac{\left(-2 x^{2}\right)^{n}}{n!}-1\right] \\
& =-8 x\left(e^{-2 x^{2}}-1\right)=8 x\left(1-e^{-2 x^{2}}\right) .
\end{aligned}
$$

The series converges for
$-\infty<-2 x^{2}<\infty \quad \Longrightarrow \quad \infty>2 x^{2}>-\infty \quad \Longrightarrow \quad 2 x^{2}<\infty \quad \Longrightarrow \quad x^{2}<\infty \quad \Longrightarrow \quad-\infty<x<\infty$.
3. Find the Taylor series of the function

$$
f(x)=\frac{x}{4 x+3}
$$

about $x=2$. Write your answer in sigma notation simplified as much as possible. You must use a method that guarantees that the series converges to the function. What is the radius of convergence of the series?
x-2
Long division gives

$$
\begin{aligned}
\frac{x}{4 x+3} & =\frac{1}{4}-\frac{3 / 4}{4 x+3}=\frac{1}{4}-\frac{3}{4}\left[\frac{1}{4(x-2)+11}\right]=\frac{1}{4}-\frac{3}{44}\left[\frac{1}{1+(4 / 11)(x-2)}\right] \\
& =\frac{1}{4}-\frac{3}{44} \sum_{n=0}^{\infty}\left[-\frac{4}{11}(x-2)\right]^{n} \\
& =\frac{1}{4}-\frac{3}{44} \sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n}}{11^{n}}(x-2)^{n} \\
& =\frac{1}{4}-\frac{3}{44}+\sum_{n=1}^{\infty} \frac{3(-1)^{n+1} 4^{n-1}}{11^{n+1}}(x-2)^{n} \\
& =\frac{2}{11}+\sum_{n=1}^{\infty} \frac{3(-1)^{n+1} 4^{n-1}}{11^{n+1}}(x-2)^{n} .
\end{aligned}
$$

Since the series is valid for

$$
-1<-\frac{4}{11}(x-2)<1 \quad \Longrightarrow \quad-\frac{11}{4}<x-2<\frac{11}{4}
$$

the radius of convergence is $11 / 4$.

4 If $a>1$ is a constant, determine whether the the sequence of functions

$$
f_{n}(x)=\frac{a^{n} x^{3}-2 a x+1}{a^{n+1} x^{2}+3 x+10}
$$

has a limit on the interval $0 \leq x \leq 14$.

When we divide all terme by a^{n},

$$
\lim _{n \rightarrow \infty} \frac{a^{n} x^{3}-2 a x+1}{a^{n+1} x^{2}+3 x+10}=\lim _{n \rightarrow \infty} \frac{x^{3}-2 x / a^{n-1}+1 / a^{n}}{a x^{2}+3 x / a^{n}+10 / a^{n}}=\frac{x^{3}}{a x^{2}}=\frac{x}{a},
$$

provided $x \neq 0$. When $x=0$,

$$
f_{n}(0)=\frac{1}{10}, \quad \text { and } \quad \lim _{n \rightarrow \infty} f_{n}(0)=\frac{1}{10} .
$$

Thus,

$$
\lim _{n \rightarrow \infty} f_{n}(x)= \begin{cases}x / a, & 0<x \leq 14 \\ 1 / 10, & x=0\end{cases}
$$

3 5. Find, if possible, an example of a power series in powers of $x+5$ that has open interval of convergence $-20<x<11$. If it is not possible, explain why not.

This is not possible. The centre of the interval is $x=-4.5$. It should be $x=-5$ for a power series in $x+5$.

