MATH2132 Test1 Solutions

1. Find the interval of convergence for the power series

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n} n 3^{n}}{n+1}(x-2)^{2 n}
$$

When we set $y=(x-2)^{2}$, the series becomes

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n} n 3^{n}}{n+1} y^{n} .
$$

The radius of convergence of this series is

$$
R_{y}=\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n} n 3^{n}}{n+1}}{\frac{(-1)^{n+1}(n+1) 3^{n+1}}{n+2}}\right|=\frac{1}{3} .
$$

The radius of convergence of the original series is therefore $R_{x}=1 / \sqrt{3}$. The open interval of convergence is

$$
-\frac{1}{\sqrt{3}}<x-2<\frac{1}{\sqrt{3}} \quad \Longrightarrow \quad 2-\frac{1}{\sqrt{3}}<x<2+\frac{1}{\sqrt{3}} .
$$

At the end points, the series becomes

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n} n 3^{n}}{n+1}\left(\frac{ \pm 1}{\sqrt{3}}\right)^{2 n}=\sum_{n=2}^{\infty} \frac{(-1)^{n} n}{n+1}
$$

Since $\lim _{n \rightarrow \infty} \frac{(-1)^{n} n}{n+1}$ does not exist, the series diverges by the $n^{\text {th }}$-term test. The interval of convergence is

$$
2-\frac{1}{\sqrt{3}}<x<2+\frac{1}{\sqrt{3}} .
$$

2. Find the Taylor series about $x=2$ for the function

$$
\frac{1}{\sqrt{4+3 x}} .
$$

Write your answer in sigma notation simplified as much as possible. You must use a method that guarantees that the series converges to the function. What is the open interval of convergence for the series?
x-2
The Taylor series can be obtained with the binomial expansion,

$$
\begin{aligned}
\frac{1}{\sqrt{4+3 x}}= & \frac{1}{\sqrt{3(x-2)+10}}=\frac{1}{\sqrt{10}}\left[1+\frac{3(x-2)}{10}\right]^{-1 / 2} \\
= & \frac{1}{\sqrt{10}}\left[1+(-1 / 2) \frac{3}{10}(x-2)+\frac{(-1 / 2)(-3 / 2)}{2!} \frac{3^{2}}{10^{2}}(x-2)^{2}\right. \\
& \left.\quad+\frac{(-1 / 2)(-3 / 2)(-5 / 2)}{3!} \frac{3^{3}}{10^{3}}(x-2)^{3}+\cdots\right] \\
= & \frac{1}{\sqrt{10}}\left[1-\frac{3}{2 \cdot 10}(x-2)+\frac{3^{2}(3)}{2^{2} 10^{2} 2!}(x-2)^{2}-\frac{3^{3}(1 \cdot 3 \cdot 5)}{2^{3} 10^{3} 3!}(x-2)^{3}+\cdots\right] \\
= & \frac{1}{\sqrt{10}}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n}[1 \cdot 3 \cdot 5 \cdots(2 n-1)]}{2^{n} 10^{n} n!}(x-2)^{n}\right] \\
= & \sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n}(2 n)!}{2^{2 n} 10^{n+1 / 2}(n!)^{2}}(x-2)^{n} .
\end{aligned}
$$

The open interval of convergence is

$$
-1<\frac{3(x-2)}{10}<1 \quad \Longrightarrow \quad-\frac{10}{3}<x-2<\frac{10}{3} \quad \Longrightarrow \quad-\frac{4}{3}<x<\frac{16}{3} .
$$

3. Find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n 3^{n}}{(2 n)!} x^{2 n+2}
$$

If we set $y=x^{2}$, then

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n 3^{n}}{(2 n)!} x^{2 n+2}=x^{2} \sum_{n=1}^{\infty} \frac{(-1)^{n} n 3^{n}}{(2 n)!} y^{n} .
$$

The radius of convergence of this series is

$$
R_{y}=\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n} n 3^{n}}{(2 n)!}}{\frac{(-1)^{n+1}(n+1) 3^{n+1}}{(2 n+2)!}}\right|=\lim _{n \rightarrow \infty} \frac{n 3^{n}}{(2 n)!} \frac{(2 n+2)(2 n+1)(2 n)!}{(n+1) 3^{n+1}}=\infty .
$$

Hence, the radius of convergence of the original series is $R_{x}=\infty$, also. If now set

$$
S(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n} n 3^{n}}{(2 n)!} x^{2 n+2} \quad \text { then } \quad \frac{S(x)}{x^{3}}=\sum_{n=1}^{\infty} \frac{(-1)^{n} n 3^{n}}{(2 n)!} x^{2 n-1},
$$

provided x is not equal to 0 . Integration gives

$$
\begin{aligned}
\int \frac{S(x)}{x^{3}} d x & =\sum_{n=1}^{\infty} \frac{(-1)^{n} n 3^{n}}{(2 n)(2 n)!} x^{2 n}+C=\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n}}{(2 n)!} x^{2 n}+C \\
& =\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n)!}(\sqrt{3} x)^{2 n}+C=\frac{1}{2}\left[\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}(\sqrt{3} x)^{2 n}-1\right]+C \\
& =\frac{1}{2}[\cos \sqrt{3} x-1]+C .
\end{aligned}
$$

Differentiation gives

$$
\frac{S(x)}{x^{3}}=-\frac{\sqrt{3}}{2} \sin \sqrt{3} x \quad \Longrightarrow \quad S(x)=-\frac{\sqrt{3} x^{3}}{2} \sin \sqrt{3} x .
$$

When $x=0$, the series has sum 0 . Since the above formula also gives 0 for $x=0$, we can write that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n 3^{n}}{(2 n)!} x^{2 n+2}=\frac{\sqrt{3} x^{3}}{2} \sin \sqrt{3} x, \quad-\infty<x<\infty
$$

4. Approximate the value of the integral

$$
\int_{0}^{1} \frac{x-\sin x}{x^{3}} d x
$$

accurate to four decimal places. Justify any conclusions that you make.

If we substitute the Maclaurin series for $\sin x$,

$$
\begin{aligned}
\int_{0}^{1} \frac{x-\sin x}{x^{3}} d x & =\int_{0}^{1} \frac{1}{x^{3}}\left[x-\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\right)\right] d x \\
& =\int_{0}^{1}\left(\frac{1}{3!}-\frac{x^{2}}{5!}+\frac{x^{4}}{7!}+\cdots\right) d x \\
& =\left\{\frac{x}{3!}-\frac{x^{3}}{3 \cdot 5!}-\frac{x^{5}}{5 \cdot 7!}+\cdots\right\}_{0}^{1} \\
& =\frac{1}{3!}-\frac{1}{3 \cdot 5!}+\frac{1}{5 \cdot 7!}+\cdots
\end{aligned}
$$

This alternating series converges since absolute values of terms are decreasing and have limit zero. The sum of the series lies between any two successive partial sums. We calculate that

$$
S_{1}=0.166667, \quad S_{2}=0.16389, \quad S_{3}=0.16392
$$

Since S_{2} and S_{3} agree to 4 decimal places, we can say that to 4 decimal places

$$
\int_{0}^{1} \frac{x-\sin x}{x^{3}} d x \approx 0.1639
$$

