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15 1. (a) Find the Taylor series about x = 2 for the function
1

(3 + 2x)1/3
. Express your answer in

sigma notation simplified as much as possible. You must use a technique that ensures that the
series converges to the function.

(b) What is the radius of convergence of the series?

(a)

1

(3 + 2x)1/3
=

1

[7 + 2(x− 2)]1/3
=

1

71/3

[

1 +
2

7
(x − 2)

]

−1/3

= 7−1/3

{

1 +

(

−
1

3

) [

2

7
(x − 2)

]

+
(−1/3)(−4/3)

2!

[

2

7
(x − 2)

]2

+
(−1/3)(−4/3)(−7/3)

3!

[

2

7
(x − 2)

]3

+ · · ·

}

= 7−1/3

[

1 −
2

3 · 7
(x − 2) +

4 · 22

32722!
(x − 2)2 −

(4 · 7)23

33733!
(x − 2)3 + · · ·

]

= 7−1/3

{

1 +
∞
∑

n=1

(−1)n2n[1 · 4 · 7 · · · (3n − 2)]

3n7nn!
(x − 2)n

}

(b) The expansion is valid for

∣

∣

∣

∣

2

7
(x − 2)

∣

∣

∣

∣

< 1 =⇒ |x − 2| <
7

2
. The radius of convergence is

R = 7/2.



13 2. (a) Find the Maclaurin series for the function f(x) =
x4

(4 − 3x)2
. Express your final answer in

sigma notation simplified as much as possible.
(b) What is the interval of convergence of the series?

(a)
1

4 − 3x
=

1

4(1− 3x/4)
=

1

4

∞
∑

n=0

(

3x

4

)n

=
∞
∑

n=0

3n

4n+1
xn,

valid for |3x/4| < 1, or |x| < 4/3. Because the radius of convergence is positive, we may differentiate
this series term-by-term,

3

(4 − 3x)2
=

∞
∑

n=0

3nn

4n+1
xn−1.

Thus,

x4

(4 − 3x)2
=

∞
∑

n=0

3n−1n

4n+1
xn+3 =

∞
∑

n=3

3n−4(n − 3)

4n−2
xn =

∞
∑

n=4

3n−4(n − 3)

4n−2
xn.

(b) Since end points of an open interval of convergence are never picked up under differentiation,
the interval of convergence is |x| < 4/3.



12 3. Evaluate
∞
∑

n=2

2n

(n + 1)!
xn.

Justify all steps in your solution.

Method 1: The radius of convergence of the series is R = lim
n→∞

∣

∣

∣

∣

2n/(n + 1)!

2n+1/(n + 2)!

∣

∣

∣

∣

= ∞. If we set

S(x) =
∞
∑

n=2

2n

(n + 1)!
xn, then

xS(x) =
∞
∑

n=2

2n

(n + 1)!
xn+1 =

∞
∑

n=3

2n−1

n!
xn =

1

2

∞
∑

n=3

(2x)n

n!

=
1

2
[e2x − 1 − 2x − 2x2] =

1

2
(e2x − 1) − x − x2.

Thus, S(x) =
1

2x
(e2x − 1) − 1 − x, provided x 6= 0. The sum at x = 0 is 0.

Method 2: The radius of convergence of the series is R = lim
n→∞

∣

∣

∣

∣

2n/(n + 1)!

2n+1/(n + 2)!

∣

∣

∣

∣

= ∞. If we set

S(x) =
∞
∑

n=2

2n

(n + 1)!
xn, then

xS(x) =

∞
∑

n=2

2n

(n + 1)!
xn+1.

Differentiation gives

d

dx
[xS(x)] =

∞
∑

n=2

2n

n!
xn =

∞
∑

n=0

(2x)n

n!
− 1 − 2x = e2x − 1 − 2x.

Integration now gives

xS(x) =
1

2
e2x − x − x2 + C.

Substitution of x = 0 yields 0 = 1/2 + C, and therefore

xS(x) =
1

2
e2x − x − x2 −

1

2
=⇒ S(x) =

1

2x
(e2x − 1) − 1 − x,

valid for all x except x = 0. The sum at x = 0 is 0.



10 4. Find, in explicit form y = f(x), the solution of the initial value problem

x2y
dy

dx
+ x2 = 1, y(1) = 1.

The differential equation is separable,

y dy =
1− x2

x2
dx.

A 1-parameter family of solutions is defined implicitly by
∫

y dy =

∫
(

1

x2
− 1

)

dx =⇒
y2

2
= −

1

x
− x + C.

For y(1) = 1,

1

2
= −1− 1 + C =⇒ C =

5

2
.

Thus,

y2 = −
2

x
− 2x + 5 =⇒ y = ±

√

5 −
2

x
− 2x.

But only y =

√

5−
2

x
− 2x satisfies the initial condition.


