Student Name -

Student Number -

Values

15 1. (a) Find the Taylor series about $x=2$ for the function sigma notation simplified as much as possible. You must use a technique that ensures that the series converges to the function.
(b) What is the radius of convergence of the series?
(a)

$$
\begin{aligned}
\frac{1}{(3+2 x)^{1 / 3}=} & \frac{1}{[7+2(x-2)]^{1 / 3}}=\frac{1}{7^{1 / 3}}\left[1+\frac{2}{7}(x-2)\right]^{-1 / 3} \\
= & 7^{-1 / 3}\left\{1+\left(-\frac{1}{3}\right)\left[\frac{2}{7}(x-2)\right]+\frac{(-1 / 3)(-4 / 3)}{2!}\left[\frac{2}{7}(x-2)\right]^{2}\right. \\
& \left.+\frac{(-1 / 3)(-4 / 3)(-7 / 3)}{3!}\left[\frac{2}{7}(x-2)\right]^{3}+\cdots\right\} \\
= & 7^{-1 / 3}\left[1-\frac{2}{3 \cdot 7}(x-2)+\frac{4 \cdot 2^{2}}{3^{2} 7^{2} 2!}(x-2)^{2}-\frac{(4 \cdot 7) 2^{3}}{3^{3} 7^{3} 3!}(x-2)^{3}+\cdots\right] \\
= & 7^{-1 / 3}\left\{1+\sum_{n=1}^{\infty} \frac{(-1)^{n} 2^{n}[1 \cdot 4 \cdot 7 \cdots(3 n-2)]}{3^{n} 7^{n} n!}(x-2)^{n}\right\}
\end{aligned}
$$

(b) The expansion is valid for $\left|\frac{2}{7}(x-2)\right|<1 \quad \Longrightarrow \quad|x-2|<\frac{7}{2}$. The radius of convergence is $R=7 / 2$.

13 2. (a) Find the Maclaurin series for the function $f(x)=\frac{x^{4}}{(4-3 x)^{2}}$. Express your final answer in sigma notation simplified as much as possible.
(b) What is the interval of convergence of the series?
(a) $\frac{1}{4-3 x}=\frac{1}{4(1-3 x / 4)}=\frac{1}{4} \sum_{n=0}^{\infty}\left(\frac{3 x}{4}\right)^{n}=\sum_{n=0}^{\infty} \frac{3^{n}}{4^{n+1}} x^{n}$,
valid for $|3 x / 4|<1$, or $|x|<4 / 3$. Because the radius of convergence is positive, we may differentiate this series term-by-term,

$$
\frac{3}{(4-3 x)^{2}}=\sum_{n=0}^{\infty} \frac{3^{n} n}{4^{n+1}} x^{n-1} .
$$

Thus,

$$
\frac{x^{4}}{(4-3 x)^{2}}=\sum_{n=0}^{\infty} \frac{3^{n-1} n}{4^{n+1}} x^{n+3}=\sum_{n=3}^{\infty} \frac{3^{n-4}(n-3)}{4^{n-2}} x^{n}=\sum_{n=4}^{\infty} \frac{3^{n-4}(n-3)}{4^{n-2}} x^{n} .
$$

(b) Since end points of an open interval of convergence are never picked up under differentiation, the interval of convergence is $|x|<4 / 3$.

$$
\sum_{n=2}^{\infty} \frac{2^{n}}{(n+1)!} x^{n} .
$$

Justify all steps in your solution.

Method 1: The radius of convergence of the series is $R=\lim _{n \rightarrow \infty}\left|\frac{2^{n} /(n+1)!}{2^{n+1} /(n+2)!}\right|=\infty$. If we set $S(x)=\sum_{n=2}^{\infty} \frac{2^{n}}{(n+1)!} x^{n}$, then

$$
\begin{aligned}
x S(x) & =\sum_{n=2}^{\infty} \frac{2^{n}}{(n+1)!} x^{n+1}=\sum_{n=3}^{\infty} \frac{2^{n-1}}{n!} x^{n}=\frac{1}{2} \sum_{n=3}^{\infty} \frac{(2 x)^{n}}{n!} \\
& =\frac{1}{2}\left[e^{2 x}-1-2 x-2 x^{2}\right]=\frac{1}{2}\left(e^{2 x}-1\right)-x-x^{2} .
\end{aligned}
$$

Thus, $S(x)=\frac{1}{2 x}\left(e^{2 x}-1\right)-1-x$, provided $x \neq 0$. The sum at $x=0$ is 0 .

Method 2: The radius of convergence of the series is $R=\lim _{n \rightarrow \infty}\left|\frac{2^{n} /(n+1)!}{2^{n+1} /(n+2)!}\right|=\infty$. If we set $S(x)=\sum_{n=2}^{\infty} \frac{2^{n}}{(n+1)!} x^{n}$, then

$$
x S(x)=\sum_{n=2}^{\infty} \frac{2^{n}}{(n+1)!} x^{n+1} .
$$

Differentiation gives

$$
\frac{d}{d x}[x S(x)]=\sum_{n=2}^{\infty} \frac{2^{n}}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{(2 x)^{n}}{n!}-1-2 x=e^{2 x}-1-2 x .
$$

Integration now gives

$$
x S(x)=\frac{1}{2} e^{2 x}-x-x^{2}+C .
$$

Substitution of $x=0$ yields $0=1 / 2+C$, and therefore

$$
x S(x)=\frac{1}{2} e^{2 x}-x-x^{2}-\frac{1}{2} \quad \Longrightarrow \quad S(x)=\frac{1}{2 x}\left(e^{2 x}-1\right)-1-x,
$$

valid for all x except $x=0$. The sum at $x=0$ is 0 .
4. Find, in explicit form $y=f(x)$, the solution of the initial value problem

$$
x^{2} y \frac{d y}{d x}+x^{2}=1, \quad y(1)=1
$$

The differential equation is separable,

$$
y d y=\frac{1-x^{2}}{x^{2}} d x
$$

A 1-parameter family of solutions is defined implicitly by

$$
\int y d y=\int\left(\frac{1}{x^{2}}-1\right) d x \quad \Longrightarrow \quad \frac{y^{2}}{2}=-\frac{1}{x}-x+C .
$$

For $y(1)=1$,

$$
\frac{1}{2}=-1-1+C \quad \Longrightarrow \quad C=\frac{5}{2}
$$

Thus,

$$
y^{2}=-\frac{2}{x}-2 x+5 \quad \Longrightarrow \quad y= \pm \sqrt{5-\frac{2}{x}-2 x}
$$

But only $y=\sqrt{5-\frac{2}{x}-2 x}$ satisfies the initial condition.

