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16 1. Find the Taylor series about x = 1 for the function f(x) = 1/(3x + 2)3/2. You must use a method
that guarantees that the series converges to f(x). Express your answer in sigma notation, simplified
as much as possible. What is the radius of convergence of the series?
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the radius of convergence is 5/3.
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where a is a constant. For what values of x is your sum valid?
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This is valid for all real x.



10 3. Find a 1-parameter family of solutions to the differential equation
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Does your family contain any singular solutions? If it does, find one; if it does not, explain why
not.

When we write the differential equation in the form
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we see that it is linear first-order. An integrating factor is
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provided x 6= 0. We multiply each term in the differential equation by 1/x2 to get
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A 1-parameter family of solutions is therefore
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Since the differential equation is linear, this is a general solution, and there can be no singular
solutions.



6 4. Three chemicals A, B, and C combine to form chemical D in such a way that 1 unit of A, 2 units
of B, and 2 units of C create 5 units of D. The rate at which D is formed is proportional to the
product of the amount of A and the square of the amount of C in the mixture, but it does not
depend on the amount of B. If 10 units of A, 12 units of B, and 15 units of C are placed in a
container at time t = 0, find an initial-value problem for the amount of D given that 3 units of D
were in the container at that time.

If we let x(t) represent the number of units of D in the mixture at time t, then
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