Values

7 1. (a) Find a 1-parameter family of solutions for the differential equation

$$
\frac{1}{x} \frac{d y}{d x}=1-\frac{4 y}{x^{2}+1} .
$$

(b) Is your family a general solution? Explain.
(a) When we write the differential equation in the form,

$$
\frac{d y}{d x}+\frac{4 x y}{x^{2}+1}=x
$$

we see that it is linear with integrating factor

$$
e^{\int 4 x /\left(x^{2}+1\right) d x}=e^{2 \ln \left(x^{2}+1\right)}=\left(x^{2}+1\right)^{2} .
$$

Multiplication of the differential equation by this gives

$$
\left(x^{2}+1\right)^{2} \frac{d y}{d x}+4 x\left(x^{2}+1\right) y=x\left(x^{2}+1\right)^{2} \quad \Longrightarrow \quad \frac{d}{d x}\left[\left(x^{2}+1\right)^{2} y\right]=x\left(x^{2}+1\right)^{2}
$$

Integration now gives

$$
\left(x^{2}+1\right)^{2} y=\frac{1}{6}\left(x^{2}+1\right)^{3}+C \quad \Longrightarrow \quad y(x)=\frac{1}{6}\left(x^{2}+1\right)+\frac{C}{\left(x^{2}+1\right)^{2}} .
$$

(b) Because we have a 1-parameter family of solutions to a linear, first-order differential equation, the solution is general.

7 2. Find a general solution for the differential equation

$$
\frac{d^{3} y}{d x^{3}}+2 \frac{d y}{d x}-3 y=3 \sin 2 x
$$

The auxiliary equation is

$$
0=m^{3}+2 m-3=(m-1)\left(m^{2}+m+3\right),
$$

with solutions $m=1$ and $m=(-1 \pm \sqrt{1-12}) / 2=(-1 \pm \sqrt{11} i) / 2$. A general solution of the associated homogeneous equation is

$$
y_{h}(x)=C_{1} e^{x}+e^{-x / 2}\left(C_{2} \cos \frac{\sqrt{11} x}{2}+C_{3} \sin \frac{\sqrt{11} x}{2}\right)
$$

If we substitute a particular solution $y_{p}(x)=A \sin 2 x+B \cos 2 x$ into the nonhomogeneous equation, we get

$$
(-8 A \cos 2 x+8 B \sin 2 x)+2(2 A \cos 2 x-2 B \sin 2 x)-3(A \sin 2 x+B \cos 2 x)=3 \sin 2 x .
$$

When we equate coefficients of $\sin 2 x$ and $\cos 2 x$, we get

$$
8 B-4 B-3 A=3, \quad-8 A+4 A-3 B=0, \quad \Longrightarrow \quad A=-\frac{9}{25}, \quad B=\frac{12}{25} .
$$

Thus, $y_{p}(x)=-\frac{9}{25} \sin 2 x+\frac{12}{25} \cos 2 x$, and a general solution of the nonhomogeneous equation is

$$
y(x)=C_{1} e^{x}+e^{-x / 2}\left(C_{2} \cos \frac{\sqrt{11} x}{2}+C_{3} \sin \frac{\sqrt{11} x}{2}\right)-\frac{9}{25} \sin 2 x+\frac{12}{25} \cos 2 x .
$$

8 3. (a) Solve the following initial-value problem

$$
2 \frac{d^{2} y}{d x^{2}}+20 \frac{d y}{d x}+18 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 .
$$

(b) Find the maximum value for $y(x)$.
(a) The auxiliary equation is $0=m^{2}+10 m+9=(m+1)(m+9)$ with solutions $m=-1$ and $m=-9$. A general solution of the differential equation is

$$
y(x)=C_{1} e^{-x}+C_{2} e^{-9 x} .
$$

The initial conditions require

$$
0=y(0)=C_{1}+C_{2}, \quad 1=y^{\prime}(0)=-C_{1}-9 C_{2} \quad \Longrightarrow \quad C_{1}=\frac{1}{8}, \quad C_{2}=-\frac{1}{8} .
$$

Thus,

$$
y(x)=\frac{1}{8}\left(e^{-x}-e^{-9 x}\right) .
$$

(b) $y(x)$ is a maximum when

$$
0=y^{\prime}(x)=\frac{1}{8}\left(-e^{-x}+9 e^{-9 x}\right) \quad \Longrightarrow \quad e^{8 x}=9 \quad \Longrightarrow \quad x=\frac{1}{8} \ln 9 .
$$

The maximum value of $y(x)$ is therefore

$$
\frac{1}{8}\left(e^{-(1 / 8) \ln 9}-e^{(-9 / 8) \ln 9}\right)
$$

4. Solve the following initial-value problem

$$
\frac{d^{2} y}{d x^{2}}=\frac{d y}{d x}\left(1+2 \frac{d y}{d x}\right), \quad y(0)=1, \quad y^{\prime}(0)=-1 / 2 .
$$

Since both x and y are missing, there are two solutions.
Solution 1: Because y is explicitly missing, we set $v=\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}=\frac{d v}{d x}$,

$$
\frac{d v}{d x}=(1+2 v) v \quad \Longrightarrow \quad \frac{d v}{v(1+2 v)}=d x, \quad \text { provided } v \neq 0, \quad v \neq-1 / 2
$$

A one-parameter family of solutions is defined implicitly by

$$
\int\left(\frac{1}{v}-\frac{2}{1+2 v}\right) d v=x+C \quad \ln |v|-\ln |1+2 v|=x+C .
$$

Thus,

$$
\ln \left|\frac{v}{1+2 v}\right|=x+C \quad \Longrightarrow \quad \frac{v}{1+2 v}=D e^{x}
$$

When we multiply by $1+2 v$,

$$
v=(1+2 v) D e^{x} \quad \Longrightarrow \quad v(x)=\frac{D e^{x}}{1-2 D e^{x}}
$$

Since $v=-1 / 2$ when $x=0$,

$$
-\frac{1}{2}=\frac{D}{1-2 D} \quad-1+2 D=2 D, \quad \text { an impossibility }
$$

We must therefore have $v=0$ or $v=-1 / 2$. The first is not possible since $y^{\prime}(0)=-1 / 2$. Thus

$$
v=\frac{d y}{d x}=-\frac{1}{2} \quad \Longrightarrow \quad y(x)=-\frac{x}{2}+E \text {. }
$$

The initial condition $y(0)=1$ requires $E=1$, and the solution is $y(x)=1-x / 2$.
Solution 2: Since x is explicitly missing we set $v=\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}=v \frac{d v}{d y}$,

$$
v \frac{d v}{d y}=(1+2 v) v \quad \Longrightarrow \quad \frac{d v}{1+2 v}=d y, \quad \text { provided } v \neq 0, \quad v \neq-1 / 2
$$

A one-paraneter family of solutions is defined implicitly by

$$
\frac{1}{2} \ln |1+2 v|=y+C \quad \Longrightarrow \quad \ln |1+2 v|=2 y+2 C .
$$

Exponentiation gives

$$
|1+2 v|=e^{2 y+2 C} \quad \Longrightarrow \quad 1+2 v=D e^{2 y} \quad \Longrightarrow \quad v=-\frac{1}{2}+\frac{D}{2} e^{2 y} .
$$

Since $v=-1 / 2$ whe $y=1$,

$$
-\frac{1}{2}=-\frac{1}{2}+\frac{D}{2} e^{2}
$$

This gives $D=0$, which is not possible since $D= \pm e^{2 C}$. We must therefore have $v=0$ or $v=-1 / 2$. The first is not possible since $y^{\prime}(0)=-1 / 2$. Thus

$$
v=\frac{d y}{d x}=-\frac{1}{2} \quad \Longrightarrow \quad y(x)=-\frac{x}{2}+E .
$$

The initial condition $y(0)=1$ requires $E=1$, and the solution is $y(x)=1-x / 2$.

