Values

1. Find, in explicit form, the solution of the initial-value problem

$$
\frac{d y}{d x}=\frac{1+y^{3}}{x y^{2}+y^{2}}, \quad y(0)=1 .
$$

The dfferential equation can be separated

$$
\frac{y^{2} d y}{1+y^{3}}=\frac{d x}{x+1}, \quad(y \neq-1) .
$$

A one-parameter of solutions is defined implicitly by

$$
\frac{1}{3} \ln \left|1+y^{3}\right|=\ln |x+1|+C
$$

For an explicit solution, we write

$$
\left|1+y^{3}\right|=e^{3 C}|x+1|^{3} \quad \Longrightarrow \quad 1+y^{3}=D|x+1|^{3}, \quad D= \pm e^{3 C}
$$

The initial condition requires $2=D$, and therefore

$$
1+y^{3}=2|x+1|^{3} \quad \Longrightarrow \quad y=\left(2|x+1|^{3}-1\right)^{1 / 3}
$$

7 2. A tank originally contains 1000 litres of water in which 10 kilograms of salt has been dissolved. A mixture containing 2 kilograms of salt for each 100 litres of water is added to the tank at 10 millilitres per second. At the same time 15 millilitres of well-stirred mixture is removed from the tank. Set up, but do NOT solve, an initial-value problem for the number of grams of salt in the tank as a function of time. For how long is the differential equation valid?

If we let $S(t)$ be the number of grams of salt in the tank as a function of time t in seconds, then

$$
\frac{d S}{d t}=(\text { rate salt enters })-(\text { rate salt leaves })=\frac{1}{5}-\frac{15 S}{10^{6}-5 t}, \quad S(0)=10000
$$

The differential equation is valid as long as there is water in the tank. This ends when $10^{6}-5 t=0$, and this gives $t=200,000$ seconds.
3. Find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{(2 n)!} x^{2 n}
$$

Justify all steps in your solution.

If we set $y=x^{2}$, the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{(2 n)!} y^{n}$. The radius of convergence of this series is

$$
R_{y}=\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n} n}{(2 n)!}}{\frac{(-1)^{n+1}(n+1)}{(2 n+2)!}}\right|=\lim _{n \rightarrow \infty}\left[\frac{n(2 n+2)(2 n+1)(2 n)!}{(2 n)!(n+1)}\right]=\infty
$$

Thus, $R_{x}=\infty$ also. If we set $S(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{(2 n)!} x^{2 n}$, then

$$
\frac{S(x)}{x}=\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{(2 n)!} x^{2 n-1}, \quad x \neq 0
$$

Because the radius of convergence is infinite, we can integrate this series term-by-term,

$$
\int \frac{S(x)}{x} d x=\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{(2 n)!(2 n)} x^{2 n}+C=\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}+C=\frac{1}{2}(\cos x-1)+C .
$$

Differentiation gives

$$
\frac{S(x)}{x}=-\frac{1}{2} \sin x \quad \Longrightarrow \quad S(x)=-\frac{x}{2} \sin x, \quad x \neq 0 .
$$

When $x=0, S(0)=0$, and the sum of the series at $x=0$ is also 0 . Hence, we can write that

$$
S(x)=-\frac{x}{2} \sin x, \quad-\infty<x<\infty .
$$

11 4. (a) Find, in sigma notation, a series representing

$$
\int_{0}^{x} e^{-t^{2}} d t
$$

(b) Suppose your series in part (a) is truncated when $n=N$. Find an inequality that N must satisfy if the maximum error on the interval $0 \leq x \leq 1$ must be less than 10^{-8}. Do NOT solve the inequality. Justify all statements.
(a) Using the Maclaurin series for $e^{-t^{2}}$,

$$
\begin{aligned}
\int_{0}^{x} e^{-t^{2}} d t & =\int_{0}^{x}\left(\sum_{n=0}^{\infty} \frac{\left(-t^{2}\right)^{n}}{n!}\right) d t=\int_{0}^{x}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} t^{2 n}\right) d t \\
& =\left\{\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)} t^{2 n+1}\right\}_{0}^{x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)} x^{2 n+1}
\end{aligned}
$$

(b) The series is alternating when $0 \leq x \leq 1$. Since the sequence $\left\{\frac{x^{2 n+1}}{n!(2 n+1)}\right\}$ is decreasing and has limit 0 for any x in the interval $0 \leq x \leq 1$, the series converges by the alternating series test. If the series is truncated when $n=N$, the absolute value of the maximum error is

$$
\frac{1}{(N+1)!(2 N+3)} x^{2 N+3} \leq \frac{1}{(N+1)!(2 N+3)}
$$

For this to be less than 10^{-8}, we require

$$
\frac{1}{(N+1)!(2 N+3)}<10^{-8}
$$

