Student Name -

Values

10 1. (a) Find an explicitly defined, one-parameter family of solutions for the differential equation

$$
x \frac{d y}{d x}=(1-y)(x+1) .
$$

Simplify your solution as much as possible.
(b) Show that your family has a singular solution. Can this solution be added to the family so that it is no longer singular?
(a) The equation can be separated,

$$
\frac{d y}{1-y}=\frac{x+1}{x} d x=\left(1+\frac{1}{x}\right) d x, \quad y \neq 1 .
$$

A one-parameter family of solutions is defined implicitly by

$$
\begin{aligned}
\int \frac{1}{1-y} d y & =\int\left(1+\frac{1}{x}\right) d x \\
-\ln |1-y| & =x+\ln |x|+C \\
\ln |1-y| & =-x-\ln |x|-C \\
|1-y| & =e^{-x-\ln |x|-C} \\
1-y & = \pm e^{C} x e^{-x} \\
y & =1-D x e^{-x}, \quad D= \pm e^{C}
\end{aligned}
$$

(b) Since $y=1$ is a solution of the differential equation, and it is not in the family ($D= \pm e^{C} \neq 0$), it is a singular solution of the family. If, however, we allow D to be zero, then this solution is contained in the family, and it is no longer singular.
2. Find a general solution of the differential equation

$$
x \frac{d y}{d x}=2 y+x^{4} e^{-x} .
$$

This equation is linear, first-order,

$$
\frac{d y}{d x}-\frac{2}{x} y=x^{3} e^{-x}
$$

An integrating factor is

$$
e^{\int(-2 / x) d x}=e^{-2 \ln |x|}=\frac{1}{x^{2}} .
$$

We multiply each term of the equation by this factor,

$$
\begin{aligned}
\frac{1}{x^{2}} \frac{d y}{d x}-\frac{2}{x^{3}} y & =x e^{-x} \\
\frac{d}{d x}\left(\frac{y}{x^{2}}\right) & =x e^{-x} \\
\frac{y}{x^{2}} & =\int x e^{-x} d x+C=-x e^{-x}-e^{-x}+C .
\end{aligned}
$$

A general solution is

$$
y(x)=-x^{2}(x+1) e^{-x}+C x^{2} .
$$

13 3. Find a general solution for the differential equation

$$
3 y^{\prime \prime \prime}+2 y^{\prime \prime}+2 y^{\prime}-y=2 e^{x}-x .
$$

The auxiliary equation is

$$
0=3 m^{3}+2 m^{2}+2 m-1=(3 m-1)\left(m^{2}+m+1\right) .
$$

Roots are

$$
m=\frac{1}{3}, \quad m=\frac{-1 \pm \sqrt{1-4}}{2}=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i .
$$

A general solution of the associated homogeneous equation is

$$
y_{h}(x)=C_{1} e^{x / 3}+e^{-x / 2}\left(C_{2} \cos \frac{\sqrt{3} x}{2}+C_{3} \sin \frac{\sqrt{3} x}{2}\right) .
$$

A particular solution is of the form $y_{p}(x)=A e^{x}+B x+C$. Substitution into the differential equation gives

$$
3\left(A e^{x}\right)+2\left(A e^{x}\right)+2\left(A e^{x}+B\right)-\left(A e^{x}+B x+C\right)=2 e^{x}-x .
$$

When we equate coefficients:

$$
\begin{aligned}
e^{x}: & 3 A+2 A+2 A-A=2 \quad \\
x: & -B=-1 \quad \Longrightarrow \quad B=1 \\
1: & 2 B-C=0 \quad \Longrightarrow \quad C=2
\end{aligned}
$$

Thus, $y_{p}(x)=\frac{1}{3} e^{x}+x+2$, and

$$
y(x)=C_{1} e^{x / 3}+e^{-x / 2}\left(C_{2} \cos \frac{\sqrt{3} x}{2}+C_{3} \sin \frac{\sqrt{3} x}{2}\right)+\frac{1}{3} e^{x}+x+2 .
$$

7 4. (a) You are given that a general solution of the homogeneous equation associated with the linear, constant coefficient differential equation

$$
\phi(D) y=x^{2}+e^{x} \cos 2 x
$$

is

$$
y_{h}(x)=C_{1}+C_{2} x+C_{3} \cos 2 x+C_{4} \sin 2 x .
$$

What is the differential equation?
(b) What is the form for a particular solution of the differential equation as predicted by the method of undetermined coefficients? Do NOT evaluate the coefficients.
(a) The roots of the auxiliary equation leading to $y_{h}(x)$ are $0,0, \pm 2 i$. Hence, $\phi(m)=m^{2}\left(m^{2}+4\right)=$ $m^{4}+4 m^{2}$. The differential equation is

$$
y^{\prime \prime \prime \prime}+4 y^{\prime \prime}=x^{2}+e^{x} \cos 2 x .
$$

(b) $y_{p}(x)=A x^{4}+B x^{3}+C x^{2}+D e^{x} \cos 2 x+E e^{x} \sin 2 x$.

