MATH 2132 Tutorial 10

1. A 500 -gram mass is placed on a table and attached to a spring with constant 20 newtons per metre. The other end of the spring is attached to a wall. The mass is pushed 5 centimetres so as to compress the spring, and then released. The coefficient of kinetic friction between the mass and table is $\mu=0.1$. Find where the mass stops moving for the first time. Does it move from this position? Take the coefficient of static friction to be 0.2 .
2. (a) A 2-kilogram mass is suspended from a spring with constant 1000 newtons per metre. A force $2 \sin \omega t$ newtons initiates motion at time $t=0$, and continues to act on the mass. Find the position of the mass as a function of time when resonance does not occur.
(b) What value of ω causes resonance?
3. Repeat part (a) of problem 2 if a damping force proportional to velocity with $\beta=10$ acts on the mass.

Answers:

1. With spring compressed $(10-g) / 200 \mathrm{~m}$. No
2. (a) $\frac{-\omega}{10 \sqrt{5}\left(500-\omega^{2}\right)} \sin 10 \sqrt{5} t+\frac{1}{500-\omega^{2}} \sin \omega t \quad$ (b) $\omega=10 \sqrt{5}$
3. $e^{-5 t / 2}\left[\frac{5 \omega}{\left(500-\omega^{2}\right)^{2}+25 \omega^{2}} \cos \frac{5 \sqrt{79} t}{2}+\frac{\omega\left(2 \omega^{2}-975\right)}{5 \sqrt{79}\left[\left(500-\omega^{2}\right)^{2}+25 \omega^{2}\right]} \sin \frac{5 \sqrt{79} t}{2}\right]$

$$
\frac{500-\omega^{2}}{\left(500-\omega^{2}\right)^{2}+25 \omega^{2}} \sin \omega t-\frac{5 \omega}{\left(500-\omega^{2}\right)^{2}+25 \omega^{2}} \cos \omega t
$$

