
MATH 2132 Tutorial 10 - Solutions

1. A 500-gram mass is placed on a table and attached to a spring with constant 20 newtons

per metre. The other end of the spring is attached to a wall. The mass is pushed 5

centimetres so as to compress the spring, and then released. The coefficient of kinetic

friction between the mass and table is µ = 0.2 . Find where the mass stops moving for

the first time. Does it move from this position?

Solution: Let x = x(t) be the (horizontal) position of the mass at time t , where x is

considered negative when the spring is compressed, and x is considered positive when

the spring is stretched. Thus, at time t = 0 , x = x(0) = −0.05 m . Also, x′(t) = 0 ,

since no initial velocity is given.

The function x(t) satisfies the differential equation

M
d2x

dt2
+ β

dx

dt
+ kx = F (t) ,

where M = 0.5 kg , β = 0 , k = 20 N , and F (t) represents the friction force. The mag-

nitude of the friction force is µ(gravity force) = µMg = (0.2)(0.5)g = 0.1g newtons.

However, if the spring is compressed, then the spring force acts in the positive direction,

and so the opposing friction force is F (t) = −0.1g newtons. Therefore x(t) satisfies

the following:

0.5
d2x

dt2
+ 20x = −0.1g , x(0) = 0.05 , x′(0) = 0 . (1)

Note that this initial-value problem is valid for as long as the mass is moving in the

positive direction. This means that if the mass stops moving in the positive direction

for the first time at t = t0 , then any solution x(t) of the initial-value problem is only

valid over the interval 0 ≤ t ≤ t0 . Should the mass ever start moving in the negative

direction, the friction force would change to F (t) = +0.1g newtons.

The initial value problem (1) is equivalent to

d2x

dt2
+ 40x = −0.2g , x(0) = 0.05 , x′(0) = 0 .

The auxiliary equation is m2 + 40 = 0 with solutions m = ±2
√

10i . Consequently,

a general solution of the corresponding homogeneous equation is

xh(t) = C1 cos (2
√

10t) + C2 sin (2
√

10t) .



A particular solution would have to be a constant function x(t) = A . Substitution of

this function into the differential equation gives 40A = −0.2g . Hence A = −g/200 ,

and so xp(t) = −g/200 . Thus a general solution is

x(t) = xp(t) + xh(t) = − g

200
+ C1 cos (2

√
10t) + C2 sin (2

√
10t) .

The condition x(0) = −0.05 implies

−0.05 = − g

200
+ C1 .

Hence C1 = g/200 − 0.05 = (g − 10)/200 . Since x′(t) = −2
√

10C1 sin (2
√

10t) +

2
√

10C2 cos (2
√

10t) , the condition x′(0) = 0 implies

0 = 2
√

10C2 .

Therefore C2 = 0 , and so the final solution is

x(t) = − g

200
+
g − 10

200
cos (2

√
10t) .

Notice that the coefficient (g − 10)/200 is a negative number, since g ≈ 9.81 < 10 .

Thus, starting from t = 0 , our solution x(t) is an increasing function, until cos 2
√

10t

reaches its minimum value −1 . This occurs when 2
√

5t = π , or t = π/2
√

10 . At this

moment, x = x(t) = −g/200 − (g − 10)/200 = (−2g + 10)/200 = (5 − g)/100 . Since

the value x = (5 − g)/100 is negative, the farthest position the mass will reach takes

place while the spring is still compressed. The position x = (5− g)/100 represents the

equilibrium, where the spring force is equal to the opposing friction force.

Therefore the mass will stop moving when it reaches the position x = (5− g)/100 .

2. (a) A 2-kilogram mass is suspended from a spring with constant 1000 newtons per

metre. A force 2 sinωt newtons initiates motion at time t = 0 , and continues to

act on the mass. Find the position of the mass as a function of time when resonance

does not occur.

(b) What value of ω causes resonance?

Solution:

(a) By setting y = 0 at the equilibrium, we may ignore the gravity force. The position



y = y(t) of the mass at time t satisfies the initial-value problem:

2
d2y

dt2
+ 1000y = 2 sinωt , y(0) = 0 , y′(0) = 0 ,

or equivalently,

d2y

dt2
+ 500y = sinωt , y(0) = 0 , y′(0) = 0 . (2)

The auxiliary equation is m2+500 = 0 with solutions m = ±10
√

5i . Consequently,

a general solution of the corresponding homogeneous equation is

yh(t) = C1 cos (10
√

5t) + C2 sin (10
√

5t) .

Note that the function F (t) = sinωt can be obtained from yh(t) if ω = 10
√

5 . On

the other hand, if ω 6= 10
√

5 , then F (t) = sinωt cannot be obtained from yh(t) .

Case 1 ω 6= 10
√

5

In this case, we can take a particular solution of the form

yp(t) = A cosωt+B sinωt .

Substitution of this function into the differential equation gives

(−ω2A cosωt− ω2B sinωt) + 500(A cosωt+B sinωt) = sinωt .

Hence

(500− ω2)A cosωt+ (500− ω2)B sinωt = sinωt ,

and so

(500− ω2)A = 0 and (500− ω2)B = 1 .

Therefore

A = 0 and B =
1

500− ω2
.

Thus a general solution of the differential equation in (2) is

y(t) = yp(t) + yh(t) =
1

500− ω2
sinωt+ C1 cos (10

√
5t) + C2 sin (10

√
5t) .



The condition y(0) = 0 implies C1 = 0 . Hence

y′(t) =
ω

500− ω2
cosωt+ 10

√
5C2 cos (10

√
5t) .

Now the condition y′(0) = 0 implies

0 =
ω

500− ω2
+ 10
√

5C2 .

Hence

C2 =
−ω

10
√

5(500− ω2)
.

Therefore the final solution is

y(t) =
1

500− ω2
sinωt− ω

10
√

5(500− ω2)
sin (10

√
5t) . (3)

Since ω 6= 10
√

5 , the two sine functions have different phases. Note that each of

the two terms in (3) can have a very large amplitude when the expression 500−ω2

in the denominator is very small. This occurs when ω is close to the value 10
√

5 .

However, both amplitudes are constant, as t increases, no matter how large the

amplitudes may be.

Case 2 ω = 10
√

5

Since the roots of the auxiliary equation are of multiplicity 1, we can take a partic-

ular solution of the form

yp(t) = At cos (10
√

5t) +Bt sin (10
√

5t) .

Hence

d2yp
dt2

= −20
√

5A sin (10
√

5t)+20
√

5B cos (10
√

5t)−500At cos (10
√

5t)−500Bt sin (10
√

5t) .

Substitution into (2) gives

−20
√

5A sin (10
√

5t) + 20
√

5B cos (10
√

5t) = sin (10
√

5t) .

Therefore

−20
√

5A = 1 and 20
√

5B = 0 .



Hence

A =
−1

20
√

5
and B = 0 .

Thus a general solution of the differential equation in (2) is

y(t) = yp(t) + yh(t) =
−t

20
√

5
cos (10

√
5t) + C1 cos (10

√
5t) + C2 sin (10

√
5t) .

Now the condition y(0) = 0 implies C1 = 0 . Hence

y′(t) =
−1

20
√

5
cos (10

√
5t) +

t

2
sin (10

√
5t) + 10

√
5C2 cos (10

√
5t) .

The condition y′(0) = 0 implies

0 =
−1

20
√

5
+ 10
√

5C2 .

Therefore

C2 =
1

1000
.

The final solution, for the case ω = 10
√

5 is

y(t) =
−t

20
√

5
cos (10

√
5t) +

1

1000
sin (10

√
5t) .

Notice that the amplitude of the second term, involving a sine function, is constant

and is equal to 0.001 . However, the amplitude of the first term, involving a cosine

function, is not constant. In fact, its amplitudes increase linearly, without a bound,

as t increases to infinity.

In conclusion, the resonance occurs when ω = 10
√

5 . The final solution for the

case when the resonance does not occur is given by (3).

(b) By the analysis in part (a), the value ω = 10
√

5 maximizes the amplitudes of the

oscillations, thus causing resonance.

3. Repeat part (a) of problem 2 if a damping force proportional to velocity with β = 10

acts on the mass.

Solution: The relevant initial-value problem is:



2
d2y

dt2
+ 10

dy

dt
+ 1000y = 2 sinωt , y(0) = 0 , y′(0) = 0 ,

or equivalently,

d2y

dt2
+ 5

dy

dt
+ 500y = sinωt , y(0) = 0 , y′(0) = 0 .

The auxiliary equation is m2 + 5m+ 500 = 0 with solutions m = (−5/2)± (5
√

79/2)i .

Consequently, a general solution of the corresponding homogeneous equation is

yh(t) = C1e
−5t/2 cos

5
√

79

2
t+ C2e

−5t/2 sin
5
√

79

2
t .

Note that the function F (t) = sinωt cannot be obtained from yh(t) . Therefore we can

take a particular solution of the form

yp(t) = A cosωt+B sinωt .

Substitution of this function into the differential equation gives

(−ω2A cosωt−ω2B sinωt)+5(−ωA sinωt+ωB cosωt)+500(A cosωt+B sinωt) = sinωt ,

or equivalently,

(−ω2A+ 5ωB + 500A) cosωt+ (−ω2B − 5ωA+ 500B) sinωt = sinωt .

Hence

−ω2A+ 5ωB + 500A = 0 and − ω2B − 5ωA+ 500B = 1 ,

or equivalently,

(500− ω2)A+ 5ωB = 0

−5ωA+ (500− ω2)B = 1 .

This linear system can be solved for A and B , say by Cramer’s rule. The unique

solution is

A =
−5ω

(500− ω2)2 + 25ω2
and B =

500− ω2

(500− ω2)2 + 25ω2
.



Thus a general solution of the differential equation in (3) is

y(t) = yp(t) + yh(t)

=
−5ω

(500− ω2)2 + 25ω2
cosωt+

500− ω2

(500− ω2)2 + 25ω2
sinωt

+ C1e
−5t/2 cos

5
√

79

2
t+ C2e

−5t/2 sin
5
√

79

2
t .

Now the condition y(0) = 0 implies

0 =
−5ω

(500− ω2)2 + 25ω2
+ C1 .

Therefore

C1 =
5ω

(500− ω2)2 + 25ω2
.

Since

y′(t) =
5ω2

(500− ω2)2 + 25ω2
sinωt+

ω(500− ω2)

(500− ω2)2 + 25ω2
cosωt

− 5C1

2
e−5t/2 cos

5
√

79

2
t− 5

√
79C1

2
e−5t/2 sin

5
√

79

2
t

− 5C2

2
e−5t/2 sin

5
√

79

2
t+

5
√

79C2

2
e−5t/2 cos

5
√

79

2
t ,

the condition y′(0) = 0 implies

0 =
ω(500− ω2)

(500− ω2)2 + 25ω2
− 5C1

2
+

5
√

79C2

2
.

Hence

C2 =
−2ω(500− ω2)

5
√

79[(500− ω2)2 + 25ω2]
+

C1√
79

=
2ω3 − 1000ω)

5
√

79[(500− ω2)2 + 25ω2]
+

5ω√
79[(500− ω2)2 + 25ω2]

=
ω(2ω2 − 975)

5
√

79[(500− ω2)2 + 25ω2]
.



Therefore the final solution is

y(t) =
−5ω

(500− ω2)2 + 25ω2
cosωt+

500− ω2

(500− ω2)2 + 25ω2
sinωt

+ e−5t/2

[
5ω

(500− ω2)2 + 25ω2
cos

5
√

79

2
t+

ω(2ω2 − 975)

5
√

79[(500− ω2)2 + 25ω2]
sin

5
√

79

2
t

]
.


