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CHAPTER 5
EXERCISES 5.1

. To express the solution in the form A cos (40t — ¢), we set

1 1
— cos40t — — sin 40t = A cos (40t — ¢) = A[cos 40t cos ¢ + sin 40t sin ¢)].

10 20
Because sin 40t and cos 40t are linearly independent functions we equate coefficients to obtain
1 -1
1—O:Acos¢, 2—O:Asin¢.

When these are squared and added,

1 1 )
T00 T a0 A

It now follows that ¢ must satisfy the equations

1 V5 -1 V5

E:2_0C05¢’ 20 = Esm¢.

One angle satisfying these is ¢ = —0.464 radians. The position function of the mass can therefore
5
be expressed in the form 2—\/0_ cos (40t + 0.464).

. With the coordinate system of Figure 5.6, the initial-value problem describing the position z(t) of
the mass is

d2
(1)d2 +162=0,  2(0)=-1/10, z'(0)=0.

The auxiliary equation is m? 416 = 0 with solutions m = +4i. A general solution of the differential
equation is z(t) = C7 cos4t + Cy sin 4t. To satisfy the initial conditions, we must have —1/10 = C
and 0 = 4C5. Thus, z(t) = —(1/10) cos 4t m.

. With the coordinate system of Figure 5.3, the initial-value problem describing the position z(¢) of
the mass is

1 d®x 1
To g T100r=0,  2(0) =55 '(0)=0.

The auxiliary equation is m? + 1000 = 0 with solutions m = +10v/10i. A general solution of the
differential equation is x(t) = C4 cos 104v/10t + C5 sin 104/10¢. To satisfy the initial conditions, we
must have 1/20 = Cy and 0 = 10v/10C5. .
Thus, z(t) = (1/20) cos 10/10t m. A graph 0.05

of this function is shown to the right. The

amplitude of the oscillations is 5 cm, the

period is 27/(104/10) = v/107/50 s, and 1
the frequency is 50/(v/107) = 5v/10/7 Hz. ' V '

. With the coordinate system of Figure 5.3, the initial-value problem describing the position z(t) of
the mass is
L do + 100z = 0, (0)=0 '(0) 3
z(0) = x =-3.
10 dt? ’

The auxiliary equation is m? 4+ 1000 = 0 with solutions m = £10+/10i. A general solution of the
differential equation is x(t) = Cj cos 104/10t + C5 sin 104/10¢. To satisfy the initial conditions, we
must have 0 = C7 and —3 = 104/10C5. Thus,
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z(t) = (=3v/10/100) sin 10/10t m. A graph 0.095r
of this function is shown to the right. The

amplitude of the oscillations is 3\/@/ 100 m,
the period is 27/(104/10) = /107/50 s, and ]
the frequency is 50/(v/107) = 5v/10/7 Hz.

. With the coordinate system of Figure 5.3, the initial-value problem describing the position z(t) of
the mass is

1 d’z 1 ,

Eﬁ + 100x = O, x(()) = = xr (O) =-3.

The auxiliary equation is m? 4+ 1000 = 0 with solutions m = £10+/10i. A general solution of the
differential equation is z(t) = C cos 10v/10t 4+ Cy sin 10/10¢. To satisfy the initial conditions, we
must have 1/20 = Cy and —3 = 10v/10C5. Thus,

1 1
z(t) = 20 €08 10V10t — 3VI0 sin 10v/10¢ m. .
A graph of this function is shown to the 0107
right. The amplitude of the oscillations is 0.05
2

1 2+ -3v10\ _ V115 z o

20 100 -~ 100 v '
The period is 27/(104/10) = v/107/50 s, and
the frequency is 50/(v/107) = 5v/10/7 Haz.

. With the coordinate system of Figure 5.3, the initial-value problem describing the position z(t) of
the mass is

1 d?x 1

—_—— = = —_-—— / —_ -
10 a8 + 100z = 0, x(0) 550 ¢ (0) 3.

The auxiliary equation is m? 4+ 1000 = 0 with solutions m = +10+/10i. A general solution of the
differential equation is x(t) = C cos 10v/10t + Co sin 104/10¢. To satisfy the initial conditions, we
must have —1/20 = Cy and —3 = 10v/10C5. Thus,

1 3v10
x(t) = ~ 50 08 10v10¢t — 1 sin 10v/10¢ m.
0.107
A graph of this function is shown to the

right. The amplitude of the oscillations is

) () - |

20 100 100 - 005

The period is 27/(10v/10) = v/107/50 s, and
the frequency is 50/(v/107) = 5v/10/7 Hz.

. (a) With the coordinate system of Figure 5.6, the initial-value problem describing the position z(t)
of the mass is
d*x 3

225 +10002 =0,  2(0) =~

The auxiliary equation is 2m? + 1000 = 0 with solutions m = +10v/5i. A general solution of the
differential equation is 2(t) = Cj cos 10y/5t + Cosin104/5t. To satisfy the initial conditions, we
must have —3/100 = C; and —2 = 10v/5Cs. Thus,
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3 )
x(t) = ~T0g & 10V/5t — \2/—5_ sin 10v/5¢ m.

A graph of this function is shown to the
right. The amplitude of the oscillations is

ERC R S yAvAvATE

The period is 27/(10v/5) = v/57/25 s, and
the frequency is 25/(v/57) = 5v/5/7 Hz.
(b) The initial conditions affect the amplitude, but not the period or frequency.

0.094

With a mass of 8 kg, the initial-value problem for displacements is

d*x 3
_ 1 = = ——
8 2 + 1000z = 0, x(0) 100’

2/ (0) = —2.

The auxiliary equation is 8m? + 1000 = 0 with solutions m = +5v/5i. A general solution of the
differential equation is z(t) = C cos 5v/5t + Cy sin5v/5t. The period is 27/(5v/5) = 2v/571/25 s,
double that when the mass was 2 kg. The frequency will be half its previous value.

With a spring constant of 4000 N/m, the initial-value problem for displacements is

d’z 3
2— 4+ 4000z =0 0)=—— "(0) = —2.
g T 40000 =0, 2(0) =355, @(0)
The auxiliary equation is 2m? 4+ 4000 = 0 with solutions m = 4+20v/5i. A general solution of the
differential equation is z(t) = Cj cos 20v/5t + Cy sin20v/5t. The period is 27/(20v/5) = /57/50
s, half that when the spring constant was 1000 N/m. The frequency will be double its previous
value.

With the coordinate system of Figure 5.6, the differential equation describing the position x(t) of
the mass is

d?*x

The auxiliary equation is 2m? + k = 0 with solutions m = :I:\/k—/2i. A general solution of
the differential equation is z(t) = Cj cos \/k/2t + Cy sin/k/2t. The period of the oscillations is
27/+/k/2 and therefore the frequency is \/k/2/(27) Hz. Since this must be 3, we set 1/k/2/(27) =
3, from which k = 7272 N/m.

With the coordinate system of Figure 5.6, the initial-value problem describing the position x(t) of
the mass is

d*x ,
MW—i-k:v:O, xz(0) =z, 2'(0) = vp.

The auxiliary equation is Mm? + k = 0 with solutions m = £+/k/Mi. A general solution of the
differential equation is x(t) = C; cos \/k/Mt + Cysin y/k/Mt. To satisfy the initial conditions, we
must have 2y = 2(0) = Cy and vy = 2/(0) = /k/MC5. Thus,

(t) = coy/kt—i-\/M '\/kt
T = X COs M kvosm M

If we set this equal to Asin (\/k/Mt + ¢), then

\/it—i—\/% '\/ﬁt—A '\/ﬁt o+ \/ﬁt' ¢
Zo COS M L Vo S11 M = Sin M COS COS M Sin .

This implies that
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xo = Asin ¢, \/%vozAcosqS.

When these are squared and added,

Muv? M2
A2 _ Ig + Vo — A= ZE% 4 Vg
k k
It then follows that
singb:%, cos¢:7"]\/{4/kw).

The period of the oscillations in Exercise 11 is 2 /1/k/M = 2m\/M/k. This formula makes it clear
that when M is doubled, the period is increased by a factor of v/2. It follows that the frequency
must be decreased by the same factor.

(a) When damping is ignored, the differential equation describing displacements of a mass is

d*x
Since velocity is a maximum when acceleration is zero, it follows that velocity is a maximum when
x = 0; that is, the mass passes through the equilibrium position.
(b) Maximum acceleration occurs when d3z/dt® = 0, and the differential equation implies that this
occurs when dz/dt = 0; that is, when the velocity of the mass is zero. This occurs when the mass
is at its maximum distance from equilibrium.

If we use differential equation 5.7 to describe oscillations of the mass, there is no difference in the
analysis.

(a) With the coordinate system of Figure 5.6, the initial-value problem describing the position z(t)
of the mass is

1 d%z 1
L A0 = -
10 42 + 40z = 0, z(0) 55’

The auxiliary equation is m? 4+ 400 = 0 with solutions m = #20i. A general solution of the
differential equation is x(t) = C7cos20t + C2sin20¢. To satisfy the initial conditions, we must
have —1/50 = C; and 10 = 20C>. Thus,

2'(0) = 10.

1 1
x(t) = ~5g €08 20t + 3 sin 20¢ m.
(b) To simplify the remaining parts of the exercise we express z(t) in the form

1 1
~5g 08 20t + 3 sin 20t = Asin (20t + ¢) = A(sin 20¢ cos ¢ + cos 20¢ sin ¢).

These imply that

1 . 1
—%—Asmqﬁ, §—ACOS¢.

When these are squared and added,

2 2
-1 1 626 626
A= — -] =— = A= ——.
( 50 ) + (2) 2500 50
With this value for A,
1 2
sing = ——— cos¢:—5.

V626 626
One of many expressions for ¢ is ¢ = —Sin~*(1/1/626). Thus,
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x(t) =

626 1
sin (20t — 6), here § = Sin~! (—) .
50 o b /626

The amplitude of the motion is v/626/50 m, the period is 7/10 s and the frequency is 10/ Hz.
(¢) The velocity of the mass is zero when

201626
50

where n > 0 is an integer.
(d) The mass passes through the equilibrium point when

2n+ )w 2n+1)mr 6
20t — 6 206 —0 = ——— = ———+ —
cos (20 ) = 20 5 = 10 +207

0=2'(t)

0 nrm
0==x(t — 20t—-0= - t=—+4 —
() " 20 20°
where n > 0 is an integer.
(e) The mass is 1 cm above its equilibrium position when

! 026 sin (20t — ) = sin (20t —0) = !

100 50 21626
This is true when
1 1 1 0 nrm
sin ! (= ) + 207 557 (s )+t
20t — 0 = 2v626 . 4202 2626/ 20 ' 10
S'1< 1 >+2 1S'1< 1 )+9+(2n+1)7r
7w — Sin — nw ——Sin —
21/626 20 21/626 20 20
where n > 0 is an integer.
(f) The velocity of the mass is 12 if, and when,
2/626 30
12 = cos (20t —0) = cos(20t—0)=— > 1.
5 v 626
Hence, the mass never attains this velocity.
(g) The mass is at maximum height when
V62 V62 4 1
V026 VB2 00t 0) — sin(20t—0) =1 — 20t—g= E0FUT
50 50 2
0  (dn+ D)7
= Tt T o

where n > 0 is an integer. This happens for the second time when n = 1, in which case t =
0/20 + /8.

(a) When we write expression 5.9 in the form Asin (wt — ¢),
C coswt + Cy sinwt = Asin (wt — ¢) = A(sinwt cos ¢ — coswt sin ).
When we equate coefficients of coswt and sin wt, we obtain

C

C1=—Asing, Co= Acos¢ = sinqﬁ:—g cosqﬁ:Z.

1
A 3
Similar derivations give the equations in part (b) and (c).

If s is the stretch in the spring at equilibrium, then ks = Mg so that s = Mg/k. This is the initial

displacement of the mass relative to the equilibrium position. The initial-value problem describing
the position z(t) of the mass relative to the equilibrium position is

d?*x Mg

Mdt2 +kx =0, z(0) = —=, 2/(0) =0.
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The auxiliary equation is Mm? + k = 0 with solutions m = +1/k/Mi. A general solution of the
differential equation is x(t) = Cy cos (y/k/Mt) + Casin (y/k/Mt). To satisfy the initial conditions,
we must have Mg/k = C; and 0 = \/k/MCs5. Thus,

M |k
z(t) = Tg cos Mt m.

According to equation 5.4, the differential equation for displacement of the mass is

2

d
Md f + kx = kA sinwt,

subject to the initial conditions x(0) = xg and 2’(0) = wvp. Since roots of the auxiliary equation
Mm? 4+ k =0 are m = +1/k/Mi, a general solution of the associated homogeneous equation is

[k .k
t) = C cos Mt%—Cbsm Mt'

Assuming a particular solution of the form z,(¢t) = Bsinwt + D coswt, and substituting into the
differential equation,

M(—w?Bsinwt — w?D coswt) + k(Bsinwt + D coswt) = kAsinwt.

Equating coefficients of sinwt and coswt gives
—Mw?B+ kB = kA, —Muw?D + kD = 0.

Thus, D =0 and B = kA/(k — Mw?), and

= (1 cosy/ t+Cgsm\/ t+ s1nwt

The initial conditions require

k kAw
o =0 o=\l Ce
| M kA
The second of these gives Cs = = (’UO - m), and
— Mw

. k kA .
= x( COS t + - sz sin Mt + T Mot sinwt m.

When the surface of the liquid in the right half of the tube is y metres above the equilibrium
position, the mass of liquid in the right tube above the surface in the left tube is 27r2py. The
force of gravity on this much of the liquid acts on all of the liquid in the tube. In other words, if
M represents the mass of liquid in the tube, Newton’s second law for motion of the surface in the
right half of the tube is
d%y 9
M W = —27r“pgy.

Notice that this equation is valid even when the level of liquid in the right part of the tube is
below its equilibrium position. Since the auxiliary equation is Mm?2 + 27r2pg = 0, with roots
m = ++/27r2pg/M, displacement of the right surface is of the form

[ 272 [ 2772
= (' cos 7T;\N/[png—C’gsin %t.
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2 1 [2aM
This is simple harmonic motion with period S il S.
\2rr2pg/M T\ pg

From time ¢t = 0 when the container is attached to the spring until water has completely drained
out, the mass of the container is M — rt.

(a) With the coordinate system of Figure 5.5, Newton’s second law 3.4 gives

d

dy| _ dy
pn [(M—rt)—} =—(M —rt)g _BE — ky.

dt

By expanding the first term, we can write the differential equation in the form

2

d7y dy
(M—rt)W + (ﬁ—r)a +ky=—(M —rt)g.

The initial-value problem is this differential equation subject to y(0) = 0 = y'(0).

(b) Consider now the coordinate system of Figure 5.6 where & = 0 corresponds to the position of
the container were it full and at equilibrium. The stretch s in the spring at this position is given
by the equation ks — Mg = 0. Newton’s second law gives

d

pn [(M—rt)d—x} = —(M—rt)g—ﬁcfl—f + k(s — x).

dt

When we expand and use the equation Mg — ks = 0, we find

d2x dx

(M—Tt)W—l-(ﬁ—T) g + kx = rgt.

The initial-value problem is this differential equation subject to xz(0) = Mg/k and 2/(0) = 0.
Because the coefficient of the second derivative in both equations is not constant, we cannot solve
the differential equation with the techniques that we now have available.

(a) Since the cube floats half submerged,

its density is one-half that of water, namely

500 kg/m3. Suppose we let 2 denote the A
distance of the midpoint of the cube below
the surface of the water. When the midpoint i
is x m below the surface, the force on the L x
cube is the buoyant force due to Archimedes’ 2

principle less the force of gravity, l
4

L
—9810L2 (5 + :v) +4905L3 = —9810L>2x. L

The differential equation describing oscillations of the cube is therefore

d%x 981
5002 — = —9810L°%x =— 2"+ —z=0.
a2 . Tt

(b) The auxiliary equation m? 4+ 981/(50L) = 0 has solutions m = +,/981/(50L)i, and therefore

/981 . /981
x(t) = Cy cos ﬁt—FCQSIH mt.

981/(50L)  0.705
= Hz.
s VL

The frequency of the oscillations is
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Let BC' be the line on the cylinder that resides in the surface of
the water when the cylinder is at equilibrium. If x represents
the depth of BC below the surface when the cylinder is in motion,

then Newton’s second law for the acceleration of the cylinder is =0
2 |
MZZT — 9.81(1000)(Axz), JA] S— c
dt? X

where M is the mass of the cylinder and A is its cross-sectional
area. Since M = pAL, where L is the length of the cylinder,
and p is its density

2 2

d°x d°x
pALW = —-98104Azr — LPW + 9810x = 0.

The auxiliary equation Lpm? + 9810 = 0 has roots m = ++/9810/(Lp)i, so that

x(t) = Cpcos+/9810/(Lp)t + Casin/9810/(Lp)t. Since the period of the oscillations is 4 s,
it follows that 27\/Lp/9810 = 4 = L = 39240/pn?. The mass of the cylinder is therefore
pAL = p(m/100)(39240/(pn?)) = 124.9 kg.
Because the sphere floats half submerged, its
density is one-half that of water, namely

x2+(z-y)?=R?
500 kg/m3. The resultant vertical force
./ BN
¥

on the sphere when its centre is y m below X
the surface is the buoyant force due to the
water displaced by the sphere less the force
of gravity on the sphere,

4
—9810V + 4905 (g) 7R3, zy

where V is the volume of water displaced by the sphere when its centre is y m below the surface.
We can calculate V' with the following double iterated integral,

Rty py/R*—(2—y)? Rty (2 R?—(2—y)?
Vz/ / 27rxdwdz:27r/ {—} dz
0 0 0 2 ),

R4y _ 3y R+y
=n [ R e = W{Rzz_ %} ~ TR 43R 1)
0 0

The resultant force on the sphere when its centre is at depth y is therefore

—98107 19 6207TR3 _ 98107
3 3 3

Newton’s second law now gives

4 d?y 98107 d%y 3(9.81) 3
—rR3(500)—2 = 3 _3R? = = =_ R2y—Z ).
3™ (500) 2 3 W v) 2 2R3 y

(2R + 3R%*y — *) + (y® — 3R%y).

This is not a linear equation.
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EXERCISES 5.2
. The initial-value problem describing the position z(t) of the mass is

d*r 1 dx 1

(1)@4‘1—0%4—16&5—0, LL‘(O)——l—O,

The auxiliary equation is 10m? + m + 160 = 0 with solutions m = (—1 4 9v/79i)/20. A general

solution of the differential equation is x(t) = e~t/29[C} cos (9v/79t/20) + Cy sin (9v/79¢/20)]. To

satisfy the initial conditions, we must have —1/10 = C; and 0 = —C;/20 + 9v/79C5/20. These
give

2'(0) = 0.

42 1 9VT9t V79 . 9Vt
x(t)=e ——cos - sin m
10 20 7110 20

. The initial-value problem describing the position z(t) of the mass is

d*x dx 1
1)—% 4+ 10— + 162 =0 0)=—— (0) = 0.
(g +105 +162=0,  2(0) = -1, @'(0)
The auxiliary equation is m? + 10m + 16 = 0 with solutions m = —2, —8. A general solution of the

differential equation is x(t) = Cre~2! + Coe™8. The initial conditions require —1/10 = C; + Co
and 0 = —2C; — 8Cy. These give O = —2/15 and Cq = 1/30. Thus, z(t) = (e =% — 4¢72)/30 m.

. The differential equation for motion with an unspecified damping factor is

d?z dx
1)— — 4+ 16x = 0.
()G + g + 162
Critically damped motion ocurs when roots of the auxiliary equation m? 4+ Sm + 16 = 0 are real
and equal, and this occurs when the discriminant of the quadratic is equal to zero,

(% —4(1)(16) =0 = B =8.
. The initial-value problem describing the position x(t) of the mass is

1 d?z dx 1

——— 4+ 40— + 40002 =0 0) =—

e 10 TA000e =0, () =75
The auxiliary equation is m? 4+ 400m + 40000 = 0 with solutions m = —200,—200. A general
solution of the differential equation is x(t) = (C7 + Cat)e2°%t. To satisfy the initial conditions,
we must have

'(0) = —4.

1
% =(C1;, —4=-200C;+ Cy — Cy =0.
Thus, x(t) = (1/50)e~2%% m. Since this function is never equal to zero, the mass does not pass

through the equilibrium position.

. The initial-value problem describing the position z(t) of the mass is

1 d%x dz 1

— — + 40— + 4000z =0 0)=—

woaz V" = 2(0)
The auxiliary equation is m? + 400m + 40000 = 0 with solutions m = —200, —200. A general
solution of the differential equation is z(t) = (C1 + Cat)e™2°%t. To satisfy the initial conditions,
we must have

2/ (0) = —10.

1

1
Thus, z(t) = (% — 6t) e~290% . The mass passes through the equilibrium position if this func-

tion is ever equal to zero,
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1 1
26t e—200t — f— g
(50 6)6 0 == 300 °

. (a) The initial-value problem describing the position z(t) of the mass is

d?z dx 1
1 _ 1 e = = — / = .
( )dt2 + 5dt + 50z = 0, x(0) 500 © (0)=3
The auxiliary equation is m? + 15m + 50 = 0 with solutions m = —5, —10. A general solution of

the differential equation is z(t) = Cre~5 4+ Cae ™19, To satisfy the initial conditions, we must have

1 7 13
%—01-1-02, 3=-5C; — 10C, = (;'1_1_07 02__%,

1
Thus, z(t) = 20 (1465 — 13~ '%) m.

(b) The mass passes through the equilibrium position if this function is ever equal to zero,

st 13

i -5t —10t\ _ _ 2
(14e Be ) =0 = e =10

20

Since this cannot happen for ¢ > 0, the mass does not pass through its equilibrium position.

(¢) The mass is 1 cm above the equilibrium position when

1 1

— (147 — 13719 = — — e!% — 70e" + 65 = 0.

20 (14 ) = 100 ¢ o
Solutions of this quadratic equation in e°* are .

ot 70 £+ /4900 — 4(65) _ 35 1 9v/200.

2
Since t must be positive, we take the positive root, 0.1
in which case t = (1/5) In (35 + 21/290) s. 005
0.5 17
. (a) The initial-value problem describing the position z(t) of the mass is
d*x dz 1 3
1)—% + 15— +50x =0 0) =— '(0) = —-.
(D) +15 +500 =0, 2(0) =55, 2'(0)=—7
The auxiliary equation is m? + 15m + 50 = 0 with solutions m = —5, —10. A general solution of

the differential equation is z(t) = Cre~5 4+ Cae 1. To satisfy the initial conditions, we must have

1 3 1 1
%—014‘027 -7 = —5C1 — 100, — Cl——%, CQ_E'

1
Thus, z(t) = 20 (2¢71% — e75") m.

(b) The mass passes through the equilibrium position if this function is ever equal to zero,

1 1
2 (287101& — 675t) =0 — ) — t= = In2s.

(¢) The mass is 1 cm above the equilibrium position when

1 _ _ 1
_(26 0t _ 5t):m

5 — 1% 4 565 —10=0.
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Solutions of this quadratic equation in e are

ot —5j:s/25+40: —51\/65' 0.05
2 2
Since t must be positive, we take the positive root,

—5+ /65

2 > 0,5
The figure makes it clear that the mass never 2001+
never reaches 1 cm below the equilibrium position.
We can confirm this algebraically by setting

in which case t = (1/5)1In

1 1
_2—10t_ —5t - _— 10t_5 5t 10 = 0.
20%¢ <= "T00 ‘ o
5++/25—-40
Solutions of this quadratic are e = — s which are complex.
. (a) The initial-value problem describing the position z(t) of the mass is
d’x dx 1
1)—% 4+ 15— + 50 =0 0)=— "0) = -3
(g +155, +502=0,  2(0) =55, '(0)
The auxiliary equation is m? + 15m + 50 = 0 with solutions m = —5, —10. A general solution of
the differential equation is 2(t) = Cye~5 4+ Cae ™19, To satisfy the initial conditions, we must have
1 1 11
—=C1+C -3 = -5C; — 10C Ci=—=, Cy=—.
20 1+ Ca, 1 2 == 1 5’ 2= 5
1
Thus, z(t) = 20 (11e7'% —10e™"") m.
(b) The mass passes through the equilibrium position if this function is ever equal to zero,
L (1171 — 10e™") =0 = et = 1 = t= 1 (11/10) s
20 10 5 '
(¢) The mass is 1 cm above the equilibrium position when
1 1
— (11e7 ' —10e™") = — = €' +50e” — 55 = 0.
20 (11 <) = 100 ¢ b
Solutions of this quadratic equation in e°* are .
0.05
—50 £ /2500 + 220
e’ = 5 220 954 9v1T0. 001
Since t must be positive, we take the positive root, 03 b
in which case t = (1/5)1n (24/170 — 25) s. -0.05}
0.1}

The mass is 1 cm below the equilibrium position when

1

10t 5t
S 10 5Bt 455 =0,
100 € et

21_0 (11e 1% —10e~%") =

5t

Solutions of this quadratic equation in e°* are

50 4+ /2500 — 220
et = 5 =25+ /570

1
= t=:(@5xV50)s

. (a) The initial-value problem describing the position z(t) of the mass is

2z d
a1 2000 =0, 2(0)=—, 2'(0)=5.

ol ~
dit? dt
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The auxiliary equation is 2m? + 4m + 200 = 0 with solutions m = —1+3+/114i. A general solution
of the differential equation is z(t) = e t[C} cos (3v/11t) + Cysin3v/11t)]. To satisfy the initial

conditions, we must have

1
— = (Y, 5=—Cl+3\/ﬁ02 — Cy =

174/11
10 '

110

—t
Thus, z(t) = % [11cos (3V/11t) + 17v/11sin (3\/ﬁt)} m

(b) Maximum distance from equilibrium is attained when velocity is equal to zero for the first
time,

0= 2/(t) = - {11cos(3\/_t)+17\/_181n(3\/—t)} [33\/_181n(3\/_t)+56100s(3\/_t).

110
This equation implies that

1
550 cos (3V11t) = 50V/11sin (3V11t) == tan(3V11t) =V11 =— t= Tan 'V11 +

10.

nm
311 311’

where n > 0 is an integer. We choose n = 0 for maximum distance, in which case

t= 3\/_Tan_1\/ . When this is substituted into z(t), the result is z = 0.457 m or 45.7 cm.

(¢) The mass passes through the equilibrium position when

A
0=(t) = 7= {Hcos (3V/11t) + 17v/11sin (3v/1 t)} — tan(3VI1Y) = —=—.
1 —v11
Thus, t = ——=Tan"'[ —— | + ﬂ, where n > 1 is an integer. When we choose n = 1 for
3V11 17 3V11

the first pass through the origin, ¢ = ~ 0.296 s.

1 —/
LS i A L
3v11 17 3v11
(a) The initial-value problem describing the position z(t) of the mass is

Pz _d 1
D52 4258 1402 =0, 2(0) = ——

1 —
s g7 z'(0) = 0.

The auxiliary equation is m? + 2m —|— 40 = 0 with solutions m = —1 4+ +/39i. A general solution of
the differential equation is z(t) = e~ *(Cy cos v/39t + Cq sin v/39t). To satisfy the initial conditions,
we must have

1 V39
=C;, 0=-C 39C Co=———.
To0 b V3G = =g
Thus, z(t) = —% 39 cos V39t + v/39sin v/39t| m. We now set
—ﬁ(39c05\/_t+\/_951n\/_t) Asin (v39t + ¢) = A(sin v/39t cos ¢ + cos /39t sin ).
This implies that
V39 39
A =—— Asing = ——.
cos ¢ = 720 sin ¢ 20
Squaring and adding these gives
39 392 1 1
A= = = A=—=
7802 + 7802 390 390

Hence,
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V/39v/390 in g = ~39v/390
780 T80

cosp = —

67t \/—
——sin (Vv 39t — 1.73).
Va0 °n )

One solution of these equations is ¢ = —1.73. Thus, z(t) =

(b) The mass passes through the equilibrium position when

1
sin (V39 —1.73) = V3% —-173=n7r =— t=—xo",
V390 ( ) V39

where n > 0 is an integer. The distance between successive times is 7/v/39. The differential
equation for the undamped system is

nm 4+ 1.73

0=uz(t) =

d*x
with auxiliary equation m? + 40 = 0. Roots are m = :|:2\ﬂ10]i, so that the solution of the
differential equation is 2(t) = Cy cos 2¢/10t + Cy sin 24/10t. The period of undamped oscillations is
therefore 27/(21/10) = 7/+/10. This is not the same as 27/+/39.

(a) The initial-value problem describing the position z(t) of the mass is
d? d
M—x—i—ﬁd—f—i—lmzo, z(0) = 2o, 2'(0) = vp.

dr?
B+ /B2 — 4kM
oM

motion is critically damped, 3% — 4kM = 0, and the auxiliary has equal roots m = —3/(2M). A
general solution of the differential equation is z(t) = (C; 4+ Cat)e #/CM) To satisty the initial
conditions, we must have

. Since the

The auxiliary equation is Mm? + fm + k = 0 with solutions m =

x
x():Cl, ’UQZCQ—%C& — CQZUO‘F%.
Thus, z(t) = [:170 + (vo + %) t} e PY/(2M) 1y The mass passes through the equilibrium position
when
Pzo —pt/(2M) o
0=2x(t) = — |t - t=———F———.
I( ) |:I0 + <’Uo + oM e Yo + ﬁxo/(2M)

When zy and vy are both positive, or both are negative, this value is negative, an unacceptable
value.

(b) The equation defining ¢ in part (a) yields only one value; that is, there can be at most one
time at which the mass passes through equilibrium. There will be one when the equation yields a
positive value for ¢. This occurs when

Lo

Tt Baoj @)

When x¢ > 0, this requires

Bro v O
— <0 = —+-—x<0.
vt our < 70 " 2M <
On the other hand when zy < 0, we must have
Bo v B
— >0 = —+-—<N0.
vt oar 7 v T2 <

(a) The initial-value problem describing the position z(t) of the mass is
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d? d
MO 6% ke =0, ) =m0, (0)=w.

2
B+ /B2 — 4kM
oM

motion is overdamped, 32 — 4kM > 0, and the auxiliary has real roots. Suppose we denote them

e IV T A RN/ R 3T
. .

equation is z(t) = Cye*'! + Cye¥2!. To satisfy the initial conditions, we must have

. Since the

The auxiliary equation is Mm? + fm + k = 0 with solutions m =

by w; = A general solution of the differential

w2Zo — Vo
o =C1+Cs,  vg=wiCp + wsCo = Ch=——— (6=
W2 — W1 Wz — w1

Vo — W1Zo

Thus,

WaTy — U Vg — WIT
z(t) = (72 0 0) et + (70 ! 0) e“2! m,

W2 — w1 W2 — w1

The mass passes through the equilibrium position when

0=a(t) = <LEO — UO) €1t + <7”0 — wlxo) e,

W2 — w1 W2 — w1

This implies that

| _ w20
e\/62—4kMt/M — Vo
wi1xo *
1—
Ug

When xgy and vy are both positive, or both are negative, the right side of this equation is between
0 and 1, an unacceptable value.

(b) The equation defining ¢ in part (a) yields only one value; that is, there can be at most one
time at which the mass passes through equilibrium. There will be one when the equation yields a
positive value for ¢. This occurs when

Wo
1 _ w20
Vo
W > 1.
1 —
Vo
If 1 — wizg /v > 0, this requires
w20 w1Zo
1-— >1— — wo < Wi,
Vo 0

a contradiction. Thus, we must have

VB2 —4kM
Vo i) 2M Zo

If = measures displacement of the platform from its equilibrium position, then the differential
equation for the combined motion is

(W—i—w) A2z dz

T LB ke =0,
g Ja Pl

W+ w

The auxiliary equation is ( ) m?+fm+k=0 with solutions

Bt/ +u)/g
2(W 4+ w)/g '
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Oscillations occur for large w, and for small values of w no oscillations occur. The largest value of
w for no oscillations occurs when

Ak(W 2
g 4k
The differential equation describing the angle 6 of opening of the door as a function of time ¢ is
d*6 do
I— — + k6 =0.
dt? +h dt +

The auxiliary equation Im? + fm + k = 0 has roots

- —B+ /5% — 4kI
- 27 ’

Continual motion back and forth is curtailed when motion is critically damped or overdamped,
and this occurs when 3% — 4kl > 0; that is 3 > 2V/kI.

Suppose (., B¢, and [, represent damping coefficients for underdamped, critically damped, and
overdamped motions. According to equations 5.19, 5.21, and 5.22, displacements for the mass are
given by

z(t) = e Pt/ CM) (O coswt + Oy sinwt),  (underdamped motion)

z(t) = (C1 + Cyt)e™Pt/CM)  (critically damped motion)

2(t) = CyelTPetVBE—RM)t/2M) () o(=Fo—y/Bi—4kM)t/ (M) (oyerdamped motion).

The rate at which z(t) goes to zero is determined by the exponential factors
e~ Put/(2M) e~ Bet/(2M) and e(—Boty/B2—4kM)t/(2M)

Since B, < B, it follows that e Pet/(2M) ~ =But/(2M) = and therefore the mass returns to its
equilibrium position more quickly in critically damped motion than in underdamped motion. We
now show that the mass also returns to its equilibrium position more quickly in critically damped
motion than in overdamped motion. This is true provided we can show that

Bo — /B2 — 4kM < ..

But we know that 8. = 2v kM, and therefore we must show that

ﬁo_\/ﬁg_ﬁg<ﬁc

AN
! 1<ﬁo><ﬁo

But this is true since 5. < (3,. The rate of return to equilibrium for underdamped motion can be
faster or slower than that for overdamped motion. Certainly, we can say that if 3, is very large, then
the rate at which the mass returns to its equilibrium position is very slow (since 8, — /62 — 4kM
is close to zero). As 3, decreases, the rate at which the mass returns to equilibrium increases until



16.

0=A|—

258 EXERCISES 5.2

it reaches the rate for critical damping. When (,, is very small, the rate at which the mass returns
to equilibrium is also small. As 3, increases, the rate increases until it reaches the rate for critical
damping. The rates will be the same if

6u:60_ \/5§—4kM
60_6u: \/63_62
B2 = 28,8 + B2 = B2 — B2
65 - 2ﬁoﬁu + 53 = 0.
If damping coefficients 3, and [, are such that the last quantity is negative, then the mass will

return to equilibrium more quickly for underdamped motion, whereas if this quantity is positive,
return is quicker for overdamped motion.

(a) The initial-value problem describing the position z(t) of the mass is

d? d
MO LB k=0, @) =m0, (0) =,

e
—B+ /B —4kM
oM '

the motion is underdamped, % — 4kM < 0, and the auxiliary has equal roots m = (—f +
VAEM — 5%i)/(2M). A general solution of the differential equation is

Since

The auxiliary equation is Mm?2 + fm + k = 0 with solutions m =

_pt/2M)
o(t) =e oM oM

The initial conditions determine values for C; and Cs, but we shall not need them. Any function
of this form can also be expressed in the form

z(t) = Ae” /M sin (@t + d)) :

2M

(b) The times at which the mass passes through equilibrium are defined by the equation

Ozx(t):Ae_at/@M)Sm<7M\4—ﬁ2t+¢> . Sin(LW—ﬁ?M,):O,

2M 2M

Hence,

VAKM — 2

‘ 2M (nmw — ¢)
2M B

VAKM — 32

where n > 1 is an integer. The time interval between successive passes throught the origin is
2Mm

VARM — 32

(c) Times at which the velocity of the mass is equal to zero are given by

_ A2 _ 732 _ A2
B menn gy (ng M) VIV =B o o (LM M)

t+o¢=nr ==

oM oM oM

This simplifies to

—Bsin <7‘4M\/l_62t + ¢> + 4kM — (32 cos <7"4k]w_62t + ¢> =0,

2M 2M

from which
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. (LMM—@M) _ VARM -

2M 3

Thus, times at which the velocity is zero are

2M VAkM — 32
t, = ———— |Tan"* VARM = 5 +nm—¢|,
AkM — [32 B
where n > 1 is an integer. Depending on values for ¢ and the inverse tangent function, n might

start at a value other than 1. It makes no difference to the rest of our discussion. Suppose x,, are
the corresponding values for x(t). Consider the ratio

=Bt /(2M) iy (7V N+ ¢> sin (7an + ¢>
Tn_ _ — Pltnt2—tn)/(2M)

Tnt2 Btaia/(2M) gip <7V4’“Mﬁ2tn+2 + ¢) sin <7V4’“Mﬁ2tn+2 + ¢>

2M 2M

2M AMm

———(27) = ————, and therefore
VAEM — 32 VAEM — 32

eBltnya—tn)/(2M) _ 267/\/4kM—32

Since ty40 —t, =

Furthermore,
/ _ 32 / — 32
sin Mtn+2+¢ = sin |Tan™! VARM = 57 +(n+2)7
2M g
/ — 32
= sin Tanl<w> + nmw
— 32

Thus, — VR

Tn+2
Suppose that s is the stretch in the spring when the support is motionless and the mass is at
equilibrium on the end of the spring. At this position ks — Mg = 0, where g = 9.81. When the
support is at position z and the mass has displacement z, the stretch in the spring is s — x + z.
Consequently, the differential equation for z(t) is

A2z dzr
This simplifies to
2z dx
M— — 4+ kx =kf(t).
oz T O the=kf(D)

Suppose that s is the compression in the spring when the support is motionless and the mass is
at equilibrium on the end of the spring. At this position ks — Mg = 0, where ¢ = 9.81. When
the support is at position z and the mass has displacement x, the compression in the spring is

s — x + z. Consequently, the differential equation for z(t) is
d*x dx
oz — k(s —o+2) - Mg~ G

This simplifies to

d%x dx
M— — + kz=kf(t).
oz T O the=kf(D)
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Suppose that s is the compression in the spring on level road so that the car is at equilibrium on
the spring. At this position ks — Mg = 0, where g = 9.81. When the tire is at position Y and the
car has displacement y, the compression in the spring is s — y + Y. Consequently, the differential
equation for y(t) is

2
%:k(s—wn_Mg_g%
With ks — Mg = 0, this simplifies to
d2
Mdt2 +5 +ky—kY—kf( ).

Since the speed of the car is v, the z-coordinate of the car is * = vt (taking ¢ = 0 when the car
passes through the origin), and therefore

d2
MdtQ—i-ﬁ —l—ky—kf(vt)
When damping proportional to velocity is taken into account, displacements s must satisfy
d?s . ds
Mﬁ = —MgSH19 —BE
When we replace s with L6, and sin 6 by 6 for small displacements,
d*(LO) d(L6) d*0 Mg
e ——MQH—B—dt MdtQ—i—ﬁ + LH—O.
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. The solution is the same to the time and position of the first stop of the mass. During the return
trip to the right, the initial-value problem defining the position of the mass is

d2
ﬁf + 162 = —1%, 2(0.431082) = —0.191663, 2’(0.431082) = 0.
A general solution of this differential equation is
x(t) = C3cosdt + Cysindt — I
160
The initial conditions require
—0.191663 = C5 cos 4(0.431082) + C sin 4(0.431082) — %,

0 = —4C5 sin 4(0.431082) + 4C; cos 4(0.431082).

The solution is C3 = 0.0199344 and C4 = —0.128817, so that
z(t) = 0.0199344 cos4t — 0.128817 sin4t — 1%;0
The mass comes to rest for the second time when
~0.128817
0.0199344°
Thus, t = —(1/4)Tan"'(0.128817/0.0199344) 4+ nr/4 = —0.354316 + n7 /4. Since t must be larger

than 0.431082, we choose n = 2 in which case t = 1.216480. At this time, the position of the mass
is

0 =2'(t) = —4(0.0199344) sin4t — 4(0.128817) cosdt = tan4t =

2(1.216480) = 0.0199344 cos 4(1.216480) — 0.128817 sin 4(1.216480) — % = 0.069038 m.

. (a) We should first check that the initial stretch in the spring is sufficient to overcome the force
of static friction on the mass so that motion does occur. Since the coeflicient of static friction is
twice that of kinetic friction, it follows that the minimum force that will cause motion is 1 N. At a
stretch of 6 cm, the spring force on the mass is 18(6/100) > 1. Thus, motion will occur. Since the
z-component of the force of friction when the mass is moving to the left is 1/2 N, the initial-value
problem describing the position z(t) of the mass from the time it starts until it comes to a stop
for the first time is

2

%%—i—l&r: % = 2 + 36z =1, x(0) = 0.06, 2'(0) = 0.

(b) The auxiliary equation is m? + 36 = 0 with solutions m = +6i, and therefore z(t) = C; cos 6t +
Cysin6t + 1/36. To satisfy the initial conditions, we must have 3/50 = C; + 1/36 and 0 = 6Cs.
Thus, x(t) = (29/900) cos6t + 1/36. Since v(t) = —(29/150) sin 6¢, the mass comes to rest for the
first time when 6t = 7, and at this time, its position is z = (29/900) cosm + 1/36 = —1/225. The
spring force at this position has magnitude 18(1/225) = 2/25 N. Since the force of static friction
is 1 N, further motion will not occur.

. (a) We should first check that the initial stretch in the spring is sufficient to overcome the force
of static friction on the mass so that motion does occur. Since the coefficient of static friction is
twice that of kinetic friction, it follows that the minimum force that will cause motion is 1 N. At a
stretch of 25 cm, the spring force on the mass is 18(1/4) > 1. Thus, motion will occur. Since the
z-component of the force of friction when the mass is moving to the left is 1/2 N, the initial-value
problem describing the position x(¢) of the mass from the time it starts until to a stop for the first
time is
1d%x

1
sz tBr=5 = o’+36z=1,  2(0)=025 (0)=0.
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(b) The auxiliary equation is m? + 36 = 0 with solutions m = +6i, and therefore z(t) = C; cos 6t +
Cysin6t 4+ 1/36. To satisfy the initial conditions, we must have 1/4 = C; 4+ 1/36 and 0 = 6Cs.
Thus, z(t) = (2/9) cos6t + 1/36. Since v(t) = (—4/3)sin6¢, the mass comes to rest for the first
time when 6¢ = 7, and at this time, its position is z = (2/9) cosm 4+ 1/36 = —7/36 m. The spring
force at this position has magnitude 18(7/36) = 7/2 N. Since the force of static friction is 1 N,
further motion will occur.

. The initial-value problem describing the position x(t) of the mass from the time it starts until it
comes to a stop for the first time is

1d%z 1/1 " g , 1
EW—F&C——Z(g)g = x+25x——1, z(0) =0, z'(0) = <.

The auxiliary equation is m? + 25 = 0 with solutions m = +5i, and therefore x(t) = C} cos 5t +
Cy sin5t — ¢/100. To satisfy the initial conditions, we must have 0 = C; — ¢/100 and 1/2 = 5C5.
Thus, z(t) = (g/100) cos 5t + (1/10) sin 5t — g/100. The mass comes to rest for the first time when
1 10
O=x’(t)=—%sin5t+ §cos5t = tan5t=?.
Solutions are t = (1/5)Tan"*(10/g) + n7/5 = 0.158998 + nx/5, where n is an integer. The first
positive solution is ¢ = 0.158998. The position of the mass at this time is

1
z = ~J— cos5(0.158998) + 15 5in 5(0.158998) — 1%0 = 0.0419843 m.

100
The spring force at this position has magnitude 5(0.0419843) = 0.210 N. Since the maximum force
of static friction is (1/2)(1/5)g = 0.981, the mass will not move from this position.

. The initial-value problem describing the position z(t) of the mass from the time it starts until it
comes to a stop for the first time is

1d*x 1/1 " g ,
The auxiliary equation is m? + 25 = 0 with solutions m = +5i, and therefore x(t) = C} cos 5t +
Cysinbt — g/100. To satisfy the initial conditions, we must have 0 = C; — ¢/100 and 2 = 5Cs.
Thus, z(t) = (g/100) cos5t + (2/5) sin 5t — g/100. The mass comes to rest for the first time when

4
O:x’(t):—%sin5t+2cos5t —  tanst= 20

9

Solutions are t = (1/5)Tan"*(40/g) + nw/5 = 0.266059 + n7/5, where n is an integer. The first
positive solution is ¢ = 0.266059. The position of the mass at this time is

g 2 . g
= = 2 - 2 — 2 =0.313754 m.
T 100 cos 5(0.266059) + : sin 5(0.266059) 100 0.313754 m
The spring force at this position has magnitude 5(0.313754) = 1.57 N. Since the maximum force
of static friction is (1/2)(1/5)g = 0.981, the mass will move from this position. The initial-value
problem describing the position x(t) of the mass until it comes to a stop for the second time is
1d°z 9 Z 9 /

where we have re-initiated time as t = 0 at the start of this motion. A general solution of the
differential equation is x(t) = C; cosb5t + Casin bt + ¢g/100. To satisfy the initial conditions, we
must have 0.313754 = Cy + ¢/100 and 0 = 5C5. Thus, x(t) = 0.215654 cos5t 4+ ¢g/100. The mass
comes to rest for the second time when

0=d'(t) = -5(0215654)sin5t = t= .
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The first positive solution is ¢ = 7/5. The position of the mass at this time is

2 = 0.215654 cos T + % — —0.117554 m.

The spring force at this position has magnitude 5(0.117554) = 0.588 N. Since this is less than the

maximum force of static friction, the mass will not move from this position.
6. The initial-value problem describing the position z(t) of the mass relative to its equilibrium position
is
1 d’z ,, ,
02 +4000x = 3cos100t = 2" 4 40000z = 30 cos 100t, z(0) =0, z'(0) = 10.

The auxiliary equation is m? + 40000 = 0 with solutions m = £200i. A general solution of the
associated homogeneous equation is zp,(t) = C7 cos 200t + C sin 200¢. Substituting a particular
solution of the form z, = Acos 100t + Bsin 100¢ into the differential equation gives

(—10000A cos 100t — 10 000B sin 100¢) + 40 000( A cos 100¢ + 100B sin 100t) = 30 cos 100¢.

This implies that A = 1/1000 and B = 0, so that x(t) = C cos 200¢+C5 sin 200¢+(1,/1000) cos 100¢.
The initial conditions require 0 = Cy +1/1000 and 10 = 200C5. Thus, z(t) = —(1/1000) cos 200t +
(1/20) sin200¢ 4+ (1/1000) cos 100t m. Because displacements are bounded, resonance does not

occur.

7. The initial-value problem describing the position z(¢) of the mass relative to its equilibrium position
is

1 d%x " ,

102 + 40002 = 3cos200t = 2" + 40000z = 30 cos 200¢, z(0) =0, 2'(0)=10.

The auxiliary equation is m? + 40000 = 0 with solutions m = £200i. A general solution of the
associated homogeneous equation is xp(t) = Cq cos 200t + Cysin 200¢. Substituting a particular
solution of the form z, = At cos 200t + Bt sin 200¢ into the differential equation gives

(—400A sin 200t — 40 000 At cos 200t + 400B cos 200t — 40 000Bt sin 200t)
+ 40 000( At cos 200t + Bt sin 200t) = 30 cos 200¢.

This implies that A = 0 and B = 3/40, so that x(t) = Cy cos 200t + C5 sin 200t + (3¢/40) sin 200¢.
The initial conditions require 0 = C; and 10 = 200C3. Thus, «(t) = (1/20 + 3t/40) sin 200¢ m.
Because displacements are unbounded, resonance occurs.

8. The initial-value problem describing the position of the mass relative to its equilibrium position is

d2CL' . /
(1)@ + 64x = 2sin 4t, z(0) =0, 2'(0)=0.

The auxiliary equation is 0 = m? 4 64 with solutions m = £8i. A general solution of the associated
homogeneous differential equation is zp,(t) = C; cos8t + Cysin8t. A particular solution is of the
form z,(t) = Asin4t 4+ Bcos4t. When we substitute this into the differential equation, we obtain

(—16Asin4t — 16 B cos 4t) + 64(Asin 4t + B cos4t) = 2sin 4t.

This implies that A = 1/24 and B = 0. A general solution of the differential equation is therefore
x(t) = Cpcos8t + Cysin8t + (1/24) sindt. To satisfy the initial conditions, we must have 0 = C;
and 0 = 8Cs + 1/6. Thus, x(t) = —(1/48)sin8t + (1/24)sin4t m. For large ¢, oscillations are
bounded so resonance does not occur.

9. The initial-value problem describing the position of the mass relative to its equilibrium position is

d*x . '
(I)W + 642 = 2sin 8¢, z(0) =0, 2'(0)=0.
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The auxiliary equation is 0 = m? + 64 with solutions m = 48i. A general solution of the associated
homogeneous differential equation is zp,(t) = C1 cos8t + Cysin8t. A particular solution is of the
form x,(t) = Atsin 8¢+ Bt cos 8t. When we substitute this into the differential equation, we obtain

= (—64Atsin 8t16A cos 8t — 64 Bt cos 8t — 16 B sin 8t) + 64( At sin 8¢ + Bt cos8t) = 2 sin 8¢.
When we equate coefficents of sin 8¢ and cos 8t, we get
—16B = 2, 164 = 0.

Thus, z,(t) = —(t/8)cos8t, and z(t) = Cj cos8t + Cosin8t — (t/8) cos8t. To satisfy the initial
conditions, we must have 0 = C; and 0 = 8C2 — 1/8. Hence, z(t) = (1/64)sin8t — (¢/8) cos 8t m.
For large t, oscillations are unbounded and resonance occurs.

(a) According to equation 5.4, the initial-value problem for motion of the mass is
d2$ . /
MW + kx = kAsinwt, z(0) =0, 2'(0)=0.

The auxiliary equation is 0 = Mm? + k with solutions m = £+/k/Mi. A general solution of
the associated homogeneous differential equation is zp,(t) = C4 cos (\/k/Mt) + Cysin (1/k/Mt). A
particular solution is of the form z,(t) = Bsinwt + D coswt. When we substitute this into the
differential equation, we obtain

M(—w?Bsinwt — w?D coswt) + k(Bsinwt + D coswt) = kAsin wt.
When we equate coefficents of sin wt and coswt, we get
—w?MB+ kB = kA, —w?MD + kD = 0.

kA
Thus, xp(t) = <m) Sinwt, and

x(t) = Cy cosy/ %t + Cysiny/ %t + <%) sin wt.

kwA

m . I’IQHCQ7

[k
To satisfy the initial conditions, we must have 0 = C; and 0 = MCQ +

wVEMA . |k kA .
.I(t) = mSID Mt+ <m) sin wt.

[k
(b) When w = y/k/M, the particular solution must be taken in the form z,(¢t) = Btsin MH_

[k
Dt cos Mt' Substitution into the differential equation gives

.|k [ k [ k kBt . |k [k . |k kDt [ k
kA Sin Mt =M <2B M COS Mt — W Sin Mt — 2D M Sin Mt — W COS Mt)
| k | k
+k <Bt sin Mt + Dt cos Mt) .
When we equate coeflicents of sinwt and coswt, we get —2DVEkM = kA and 2BVEM = 0. Thus,

| k .k, AVE/Mt [ k
z(t) = C cos Mt“l‘OQSln Mt_#/cos Mt'

[ k A\ k/M
To satisfy the initial conditions, we must have 0 = C; and 0 = MOQ - T/ Hence,
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Ak /Mt
x(t)zgsin %t—f/cos %t.

Oscillations are unbounded and resonance occurs.

Pz

The differential equation describing the position of the mass is M el + kx = Acoswt. Solutions

of the auxiliary equation Mm? + k = 0 are m = :l:\/k/—M 1. Hence, a general solution of the
associated homogeneous equation is x(t) = Cjcos\/k/Mt + Cysin/k/Mt. Resonance occurs
when \/k/—M =w.

The initial-value problem describing the position z(t) of the mass relative to its equilibrium position
is

1d%z 3dx . " ! : !
T + T + 10z =4sin10t = 22" 4 152" + 100z = 40sin 10¢, z(0) =0, 2'(0)=0.

The auxiliary equation is 2m? + 15m + 100 = 0 with solutions m = (=15 & 5/23i)/4. A general
solution of the associated homogeneous equation is

5/23t . 5\/23t>
=

xp(t) = e 15t/4 (Cl cos + Cy sin

A particular solution of the differential equation is of the form z,(¢) = Asin 10t + B cos 10t. When
we substitute this into the differential equation, we obtain

2(—100Asin 10t — 100B cos 10t) + 15(10A cos 10t — 10B sin 10t)
+ 100(A sin 10t + B cos 10t) = 40 sin 10¢.

When we equate coefficients of sin 10¢ and cos 10t, we get
—200A — 150B + 100A = 40, —200B + 150A 4+ 100B = 0.

The solution is A = —8/65 and B = —12/65. Hence, a general solution of the differential equation
is x(t) = e~ 1%/4[Cy cos (5v/23t/4) + Co sin (5v/23t/4)] — (4/65)(3 cos 10t + 2sin 10t). To satisfy the
initial conditions, we must have 0 = C; — 12/65 and 0 = —15C;/4 + 5v/23C5/4 — 16/13. These
imply that C; = 12/65 and Cy = 20/(13+/23), and therefore

12 5V 23t 20 5v23t 4
z(t) = o—15t/4 <&cos \/4_ + 3753 sin \/4_ ) - g(3cos 10t + 2sin 10¢) m.

(a) The initial-value problem describing the position z(t) of the mass relative to its equilibrium
position is

d’x dx
+2—

gt 100z = 2sinwt, z(0) =0, 2'(0)=0.

The auxiliary equation is m? +2m+ 100 = 0 with solutions m = —1+3v/11i. A general solution of
the associated homogeneous equation is xp(t) = et (C’l cos 3V 11t + Cy sin 3V 11t). A particular

solution of the differential equation is of the form xz,(t) = Asinwt + B coswt. When we substitute
this into the differential equation, we obtain

(—w?Asinwt — w?Bcoswt) + 2(wA coswt — wB sinwt)
+ 100(Asinwt + Bcoswt) = 2sinwt.

When we equate coefficients of sinwt and coswt, we get

—w?A —2wB + 1004 = 2, —w?B +2wA + 100B = 0.
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The solution is A = 2(100 — w?)/[(100 — w?)? 4+ 4w?] and B = —4w/[(100 — w?)? + 4w?]. Hence, a
general solution of the differential equation is

1
(100 — w?)? + 4w?

a(t) =e™’ (01 cos 3V11t + Cy sin3\/ﬁt) + [2(100 — w?) sin wt — 4w cos wi.

To satisfy the initial conditions, we must have

4w 2w (100 — w?)
0=0Cy — 0=—C) 4+ 3V11C .
PT100 — w?)? + 4w?’ 1+ 3VIIC, + (100 — w?)? + 4w?
These imply that
Of = 4w o) — 2 w(w? — 98)
' 100 — w?)? + 4w?’ > 7 3VA1 | (100 — w?)? + 4w?

The position of the mass is therefore

_ 4w 2v1w(w? — 98)
t)y=e" 3V11t in3v11t
() =e { (100 — w?)? + 42 °% T 33[(100 — w22 + do?]

1
(100 — w?)2 + 4w?

1 2v/1w(w? — 98
= (100 N7 T 40t {et [4w cos3vV11t + —wgc;) ) sin3\/11t1
—w w

+ [2(100 — w?) sinwt — 4w cos wt]

+ [2(100 — w?) sin wt — 4w cos wt]} m.

(b) Resonance occurs when the amplitude of the steady-state part of the solution, namely,

1
100 — w?)? + 4w?

[2(100 — w?) sinwt — 4w coswt],

zp(t) = (

is a maximum. The amplitude is

1
A= (100 — w?)? + 4?2 VA(100 — w?)2 + 16w? =

2
V(100 — w?)? + 4w?

This is a maximum when the derivative of (100 — w?)? + 4w? vanishes,
0=2(100 — w?)(-2w) + 8w =  w=TV2

Maximum amplitude is

2 V11
m

/(100 — 98)2 +4(98) 33

(a) Substituting a particular solution of the form x,(t) = Bcoswt + C'sinwt into the differential
equation
d? d
Md—tf +Bd—f + kx = A coswt,
gives
M(—w?B coswt — w?C'sinwt) + f(—wB sinwt + wC coswt) + k(B coswt + C'sinwt) = A coswt.

When we equate coefficients of coswt and sin wt, we obtain

(k — Mw?)B + pwC = A, —BwB + (k — Mw?)C = 0.
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. . A(k — Mw?) ApBw .
The solution of these is B = b= Mo 1 Pal’ C = = Mo 2 1 Pur The particular so-

lution is therefore
A
k— Mw?)? + f2w?

[(k — Mw?) coswt + Bw sinwt].

zp(t) = (

(b) The amplitude of the particular solution is

A
(k — Mw?)? + f2w?

A
(k= Mw?)? + 3202

\/(k: _ Mw2)2 + F2w? =

It is a maximum when (k — Mw?)? + 3%w? is smallest. To determine the value of w that yields the
minimum, we solve

0 =2(k — Mw?)(—2Mw) + 207w = 2w[-2M (k — Mw?) + 3%].

The nonzero solution is w = y/k/M — 32/(2M?). The amplitude at this value of w is
A 2AM

k 2 2 k 2 B 5\/ 4kM — 62'
k- M= — N +32 (= — P~
M 2M? M 2M?
a) Suppose y measures the distance the mass moves after striking the platform. Then Newton’s
Y g
second law applied to the motion of the mass gives

d?y dy
202 — 1000y — 1022
a2 Y=

When we divide by 10 and attach initial displacement and velocity, we obtain the initial-value
problem

+ 20g.

dy | dy
2—= + — + 100y = 2 0)=0 (0) = 2.
Tz g 00y =29, y(0)=0, ¥(0)
The auxiliary equation 2m? +m + 100 = 0 has roots m = (—14+/799i)/4. Consequently, a general
solution of the differential equation is

V799t V799t
y(t) = e /4 [ C cos + Cysin + 9.
4 50
The initial conditions require
C 799C
0=y(0) = Cr+ &, 2=y/(0) = -+ 22

These imply that C; = —g/50 and Cs = (400 — ¢)/(50+/799), and therefore

y(t) = et/ | =L cos oo + (400 — g) sin 99 + J
50v799 4

50 4
(b) The maximum displacement experienced by the mass occurs when the mass comes to an
instantaneous stop for the first time. We therefore set

d 1 t 400 — t
0= __ t/4l_gcos\/799 +(oo g> . \/—799]

50"

sin

Sdt 4 50 4 50v/799 1
Lot | V999 o VT V799 (400 g\ V799t
200 4 4 \ 50799 1 |

This equation implies that
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4 2 4
t = ——Tan ! = —0.9883 + n),
V799 400—g V799 \/799( )

200799 200

where n is an integer. The smallest positive solution occurs for n = 1, and for this value of n,
t =0.3047 s. The displacement of the mass at this time is (0.3047) = 0.51 m.

Suppose the mass of the chain is M so that its mass

per unit length is M/a. When the length of chain

hanging from the edge of the table is y, gravity

acts on this part of the chain, but it accelerates the Tr=°
entire length of chain. Newton’s second law gives l
2
%y _ Mgy y
dt? a

This differential equation is subject to the initial
conditions y(0) = b and y'(0) = 0, provided ¢ = 0 is taken at the instant motion begins. The
differential equation is linear with auxiliary equation m? — g/a = 0 = m = £./g/a. A general

solution is therefore y(t) = C1eV9/® 4 Cye™V9/9t, The initial conditions require

b201+02, OZ\/EC&—\/ECQ — 01202=b/2.
a a

b
Thus, y(t) = 5(6 g/at 4 ¢=V9/at) The chain slides off the table when y = a in which case

a:g(e g/at 4 e=Valaty  — eQVg/at—2—bae g/at 11 =0.

This is a quadratic in eV 9/% with solutions

2 /K2 2 _ K2
eVarar _ 20/bE V;la Lt SV ) :>t:\/§1n <ai7 M)
g

b

1
b

It is straightforward to verify that (@ — v/a? —b?)/b < 1 in which case ¢ would be negative, an

unacceptable value. Hence, t = gln LW).
(a) Suppose the mass of the chain is M so that its mass
per unit length is M/a. When the length of chain
hanging from the edge of the table is b, the force Tr=0
of gravity on this much chain must be larger than
the force of friction on that part of the chain still
on the table,

<b7M) 9> ps [L _ab)M} g-

Thus, the smallest amount of hanging chain is b = ps(a — b).
(b) When the length of chain hanging from the edge of the table is y, gravity acts on this part of
the chain, but it accelerates the entire length of chain. Newton’s second law gives

e

Py g

Py Mgy Mg
= ——— -y = o5 =S my =g

ar " a a

This differential equation is subject to the initial conditions y(0) = b and 3’(0) = 0, provided
t = 0 is taken at the instant motion begins. The differential equation is linear with auxiliary
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equation m? — (g/a)(1 + ux) = 0 = m = £/g(1 + pux)/a. A general solution is therefore
y(t) = CreVIttm/at 1 Cye=VoUtme)/at gy, /(1 4 ). The initial conditions require

1 1 1
0:¢MCI_¢M02 . Cl:C2Z_<b_ afuy >
a a 2 14 pg

b—Cl+Cg+1

L+ pe L+ puk

_l’_
Thus, y(t ( Al ) Volltue)/at 4 o=vg(l+ue)/aty 4 Pk The chain slides off the
a,

table when y =

1
a==(b— 2 ) (eVeOtm/at | o=Vo(tm)/aty , Gk
2 1+ p 1+ pg

which can be expressed in the form

2V 9(ltpx)/at _ eV9(tue)/at 4 1 _
b(1 + ,uk) — ap

This is a quadratic in eVI0+TrE)/at with solutions

2a n \/ 4a? 4] at/a?— b1+ pk) — ap)?

Vamjat _ 1

2 | b(1 + k) — ap [b(1 + pur) — apu]? b(L + p) — apk
and
‘ a In a+/a® —[b(1 + px) — apk]?
9(1+ i) (L + pk) — apu '

It can be shown that the negative root leads to a value ¢ < 0. Hence,

' a ln{a—i—\/cﬂ—[b(l—i—uk)—auk]?}'

g(1+ p) b(1 + px) — ap

18. Let us use the coordinate system of Figure 5.6 to measure the displacement of the mass. If s is the
stretch in the spring at equilibrium, then when the mass is at position z, the stretch is s —z + f(¢#).
Newton’s second law for the motion gives

1d2x dzr
ST 102 9 o505 —
2 di? g g T2z )
At equilibrium, —g/2 4 250s = 0, so that
1d%x dzr d’z dzr
— = —10— + 250 t —— 4+ 20— + 500z = 50sin 2t
s~ g e fO] = g + 205 4500z SHEt

subject to (0) = 2/(0) = 0. The auxiliary equation is m? + 20m + 500 = 0 with solutions
m = —10 £ 20i. A general solution of the associated homogeneous equation is therefore xp,(t) =
e 10(C) cos 20t + Cysin20t). When we substitute a particular solution of the form z,(t) =
Asin 2t + B cos 2t into the differential equation, we obtain

(—4Asin 2t — 4B cos 2t) + 20(2A cos 2t — 2B sin 2t) + 500( A sin 2t + B cos 2t) = 50 sin 2t.
Equating coeffcients to zero gives
496A — 40B = 50, 40A+ 496B = 0,

the solution of which is A = 1550/15,476 and B = —125/15476. A general solution of the
nonhomogeneous differential equation is

1550 125
t) = e 10t 20¢ in20t) + ——— sin 2t — ———— cos 2t.
z(t)=e (C1 cos 20t + C5 sin 20t) + 15476 sin 15476 cos
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The initial conditions require

125 , 1550
These give Co = —185/30952. Thus, the position of the mass is given by
125 185 1550 125
t)=e 100 [ —— t— 20t ————sin 2t — ——— cos 2t.
2(t) = e (15 476 °° 30052 ) T 15476 ™™ T 5476 °°
0.14%

A plot of this function is shown to the right.

The damping is so severe that the transient

terms disappear almost immediately. The steady-
state terms of the particular solution persist 1 5 3 4 >
forever. The mass oscillates at the same frequency \
as the motion of the upper support, but with a
slightly smaller amplitude, and out of phase with it.

-0.1+F

(a) Suppose that s > 0 represents the compression in the spring when the wheel is at equilibrium.
When y is the height of the wheel above its equilibrium position, the stretch (or compression) in
the spring is —s + y — Asinmz. Newton’s second law gives

d2
500d—tf = —1000(—s +y — Asinmz) — 500g.

At equilibrium, 1000s — 5009 = 0, so that the differential equation reduces to

d? d?
500 dtg = —1000(y — Asinmz), or dtg + 2y = 2Asinwz.
Since the truck is travelling at 18 km/hr or 5m/s, its z-coordinate ¢ seconds after meeting the

speed bump is z = 5t. Thus,
d?y

=+ 2y = 2Asinbmt, subject to  y(0) =0, ¥'(0)=0.

Since it takes the wheel 1/5 of a second to traverse the bump, the equation is in effect only for
0<t<1/5.

(b) The auxiliary equation m? + 2 = 0 has roots m = #++/2i, and therefore y,(t) = C cos /2t +
Cysinv/2t. When we substitute y,(t) = Bsin5rt + D cos 57t into the differential equation,

(2572 B sin 5t — 2572 D cos 5mt) + 2(Bsin 5t + D cos 5rt) = 2A sin 5rrt.

Equating coefficients of sin 57t and cos 57t gives

24
—25m2B+ 2B =24, —257°D +2D =0, from which B = T e D =0.
— s

Thus,

24
y(t) = Cy cos V2t + Cy sin V2t + ——— sin 5t
2 — 2572

The initial conditions require

107 A
0=y(0)=Cr, 0=y(0)=V2Cs+ 7;52
s

Displacement of the wheel is therefore

y(t) = ﬂ \/—t—i— 24 sin bt =

A . .
2 _o5n 5 S 952 = m(? sin 57t — 5v/27 sin \/§t) m
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20. The initial-value problem describing the position z(t) of the mass from the time it starts until it
comes to a stop for the first time is

d2
MW—Fkx——uMg, x(0) = 29, 2'(0) = vo.

The auxiliary equation is Mm? + k = 0 with solutions m = +./k/Mi, and therefore x(t) =
Cy cos \/k/Mt + Cysin/k/Mt — uMg/k. To satisfy the initial conditions, we must have xy =

Cy — uMg/k and vo = \/k/MC5. Thus,

x(t)=(0+“—Mg) \/7t+\/7vosm\/7t—ﬂ—]\49

The mass comes to a stop for the first time when

| k uMg\ . |k [k
—_— / e —_— —_—
0=2'(t) = (wo + - )sm t + vp cos t.

We can rewrite this equation in the form

tanwit— o - t—\/M
M- \/k/M(xo + uMg/k) k

where n is an integer. For the smallest positive solution we choose n = 0.

)

_ Vo M/k
Tan | —V /17
o (xo +uMg/k> o

21. The initial-value problem describing the position z(t) of the mass from the time it starts until it
comes to a stop for the first time is

d2
Md2 + kx=puMag, z(0) = xo, CC/(O):UOv

where vg < 0. The auxiliary equation is Mm?2 + k = 0 with solutions m = ++/k/Mi, and therefore
x(t) = Cycos\/k/Mt+ Cysin\/k/Mt + uMg/k. To satisfy the initial conditions, we must have
xo = C1 + pMg/k and vg = \/k/MC5. Thus,

x(t)-(o——) \/715—!—\/71)05111\/715—0—”—]\49

The mass comes to a stop for the first time when

0=2'(t) __\/EG:O_ —>s1n\/7t+UOCOS\/7

Except when xg = uMg/k, we can rewrite this equation in the form

tan i t Yo — t M Tan~* vo/ M/k +n
—1 = = B _ T
V"™ kM (o — M g/k) V'

xo — uMg/k
where n is an integer. For the smallest positive solution, we obtain

M. wvo/DMJk
— Tan | —X——_ h Mg/k
- Tan <xo—uMg/k>’ when zg < uMg/

M
t= ,/?57 when xg = uMg/k

, when xg > uMg/k.

)

22. According to equation 5.4, the differential equation for displacement x(¢) is
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d2
Mﬁf + kx = kAsin wt.

The auxiliary equation is Mm? + k = 0 with solutions m = 4+/k/Mi, so that

xp(t) = Cicosy/ %t—FCgSiH” %t.

Resonance occurs when w = y/k/M. In the nonresonant case, x,(t) = D sinwt + E coswt. Substi-
tution into the differential equation gives

M(—w?Dsinwt — w?E coswt) 4+ k(D sinwt + E coswt) = kAsin wt.

When we equate coefficients of sinwt and cos wt,

kA

2 _ 2 _ —

E=0.
Thus, z(t) = C \/ﬁt—kC i ,/ﬁtth inwt. The initial conditi i
us, o = (U1 COS M 2 S1n M T — Mu}Q SN wt. € 1Initlal conditions require

[ k kAw
IOZ.I(O):Cl, UOZII(O):OQ M‘Fm

Displacement of the mass is therefore

© — [k, [M RAw oo [k kA
x = I COS M L Vo b — M2 S M b — M2 S wt.

Resonance occurs when w = /k/M.

If y > 0 is the depth of the bottom surface of the cube, then Newton’s second law from time ¢t = 0
when the cube is released until it is completely submerged gives

d?y dy d’y dy
1200—= = 12009 — 2— — y(1)%(1000 600— + — + 500gy = 600
72 g —2— —y(1)°(1000)g = oz T 5009y g,

subject to y(0) = 0 and y’(0) = 0. The auxiliary equation is

—14 /T —1200000g
1200 '

If we set w = 4/1200000g — 1/1200, then a general solution of the differential equation is

600m? +m + 500g = 0 with solution m =

6
y(t) = 64/1200(01 coswt + Cysinwt) + 5

The initial conditions require

6 C
0=y(0)=Citz,  0=y(0)= 55

These give C; = —6/5 and C2 = —1/(1000w), and therefore

6  e—t/1200

== W(M()Ow coswt + sin wt).

y(t) =

This is valid as long as y < 1. When y =1,
6 eft/IQOO

l=0—
5 1000w

(1200w cos wt + sinwt),
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the numerical solution of which is t = 0.49 s.
A plot of y(t) for 0 <t <0.49 is shown 1t
to the right.

0.5r

0.2 0.4 t

If y > 0 is the depth of the bottom surface of the cube, then Newton’s second law from time ¢ = 0
when the cube is released gives

d*y dy 5 Py dy
500—2 = 5009 — 2—= — y(1)2(1000 250—2 + —= + 500gy = 250
72 92— —y(1)°(1000)g = oz T g T 5009y g,

subject to y(0) = 0 and y’(0) = 0. The auxiliary equation is

—1 4 ,/T—500000g
500 '

If we set w = 4/500000g — 1/500, then a general solution of the differential equation is

250m? +m + 500g = 0 with solution m =

1
y(t) = eft/500(01 coswt + Cy sinwt) + 3

The initial conditions require

1 C
0=y(0)=Ci+3, 0=19/(0) = — = +wCs.

These give C; = —1/2 and Cy = —1/(1000w), and therefore
1 e—t/500

== —
v =35~ To00m

(500w cos wt + sinwt).
A plot of this function is shown iy
to the right.

172

2z 3 4 57t

(a) If = is the length of the longer piece of cable, then Newton’s second law for acceleration of the

cable is
2

d“x
2SPW = 9.81pz,

where p is the mass per unit length

of the cable, and z is as shown in the 0
— X=

figure to the right. Since x + (z — z) = 25,
it follows that z = 2z — 25 and
d%x
255 = 9.81(2z — 25), T x
or, z
2
059 19600 = —245.25. l
i

The auxiliary equation 25m? — 19.62 = 0 has roots +£1/19.62/25. If we denote the positive root
by m, then z(t) = C1e™ + Cae™ ™ +245.25/19.62. The initial conditions z(0) = 15 and z/(0) = 0
require 15 = Cy + C3 + 245.25/19.62 and 0 = mC; — mCs. These imply that C; = Cy = 1.25.
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The cable slides off the peg when 25 = 1.25(e™ 4 e~™) + 245.25/19.62 and the solution of this
equation is 2.59 s.
(b) In this case Newton’s second gives

2z d’x
25PW =981pz—9.8lp — 25W —19.62x = —255.06.

The solution of this differential equation is x(t) = C1e™ + Coe™ ™! 4 255.06/19.62, where m is as
in part (a). The initial conditions require 15 = C7 4+ Cs 4+ 255.06/19.62 and 0 = mC; — mCy, and
these gives C; = C3 = 1. The cable slides off the peg when 25 = ™ + e~ + 255.06/19.62 and
the solution of this equation is 2.80 s.
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EXERCISES 5.4

. The initial-value problem describing charge Q(t) on the capacitor is

d2Q 1 1 !
2ot ogo@ =20 = Q4500Q=10, Q) =0, Q(0)=0.
The auxiliary equation is 0 = m? + 500 with solutions m = +10v/5i. A general solution of the
differential equation is therefore Q(t) = Cj cos 10v/5t 4+ Co sin 104/5t + 1/50. To satisfy the initial
conditions, we must have 0 = C; +1/50 and 0 = 10v/5C5. Thus, Q(t) = —(1/50) cos 10v/5t + 1/50
C, and the current in the circuit is I(t) = (1//5) sin 10/5¢ A.

. The initial-value problem describing charge Q(t) on the capacitor is

(1)d2—Q + 100@ + LQ =0 = Q"+100Q" +50Q =0 QO)=5 Q'(0)=0
a2 ar ' 0.02 ’ '
The auxiliary equation is m? + 100m + 50 = 0 with solutions m = —50 4 35v/2. A general solution
of the differential equation is therefore Q(t) = Cpe(~50H35VDt 4 Cne=(30+35VDt Ty satisfy the
initial conditions, we must have 5 = C; 4+ Cy and 0 = (=50 + 35v/2)C1 — (50 4 35v/2)C%. These
imply that C; = 5(5v/2 + 7)/14 and Cy = 5(7 — 5v/2)/14, and therefore

_5

5
Q(t) 14(5\/5 + 7)6(_50+35\/§)t + ﬂ(7 _ 5\/5)6—(50+35\/§)t C.

. The initial-value problem describing the current I(¢) in the circuit is

d*I dI ,
5ﬁ+205 = 20 cos 2t, I1(0)=0, I'(0)=0.
The auxiliary equation is 5m? + 20m = 0 with solutions m = 0, —4. A general solution of the
associated homogeneous differential equation is therefore I(t) = C; + Cee™*. Substituting a
particular solution of the form I,(¢t) = Acos2t+ Bsin2t into the differential equation gives

5(—4Acos2t — 4B sin 2t) + 20(—2A sin 2t + 2B cos 2t) = 20 cos 2t.

This implies that —20A + 40B = 20 and —20B — 40A = 0, from which A = —1/5 and B = 2/5.
The current is therefore I(t) = C; + Coe™* 4 (2sin2t — cos 2t)/5. The initial conditions require
0=C1+Cy—1/5and 0 = —4C5 4 4/5, from which C; = 0 and Co = 1/5. The transient part of
the current is (1/5)e~% A, and the steady-state part is (2sin 2t — cos 2t)/5 A.

. The initial-value problem describing charge Q(t) on the capacitor is

1d%Q dQ 1

——+3— 4+ —0Q =0 "+ 6 20Q =0 0)=0 "(0) = 1.

52 T3 Toa¢ = Q"+6Q+20Q=0, Q0)=0, Q(0)
The auxiliary equation m? + 6m + 20 = 0 has solutions m = —3 4 1/11i. A general solution of
the differential equation is therefore Q(t) = e3!(Cy cos V11t + Cy sin v/11t). To satisfy the initial
conditions, we must have 0 = Cy and 1 = —3C +/11C5. Thus, Q(¢) = (1/v/11)e 3! siny/11t. To
find the maximum charge on the capacitor, we find critical points for Q(t),

1
0=0Q'(t) = ﬁ(—?)e_% sin V11t + V11le 3 cos V11t).

The smallest positive solution of this equation is ¢t = (1/4/11)Tan"*(v/11/3), and the charge on the
capacitor at this time is 0.105 C.

. The initial-value problem describing the current in the circuit is

25 d%1 1

o L T — _A45sin3t 1" +45] = —81sin3t 1(0) = I'(0) = 0.
9dt2+0.04 5sin3t = 51" +45 81 sin 3t, (0) (0)=0
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The auxiliary equation 5m? + 45 = 0 has solutions m = +3i, and therefore I;,(t) = Cj cos 3t +
Csin3t. A particular solution is of the form x,(t) = Atsin3t + Btcos3t. When we substitute
this into the differential equation, we get

5(6A cos 3t — 9 At sin 3t — 6B sin 3t — 9Bt cos 3t) + 45( At sin 3t + Bt cos 3t) = —81 sin 3t.

This implies that A = 0 and B = 27/10. Thus, I(t) = Cy cos 3t + Cysin3t + (27t/10) cos 3t. To
satisfy the initial conditions, we must have 0 = Cy and 0 = 3C3 + 27/10, and the solution becomes
I(t) = —(9/10)sin 3t 4+ (27/10)t cos 3t A. Since the current becomes unbounded, resonance does
occur.
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EXERCISES 5.5

. The boundary-value problem for deflections of the beam is

dy 1 (—-9.81m

a2t El ( 7 ) ) y(0) =y"(0) =0, y(L)=y"(L)=0.
Four antidifferentiations of this equation give

9.81ma*
_ 2 3
The boundary conditions require
9.81mL3 9.81mL
0=0C1, 0=2C3, 0=C1+CoL+C3L*+CyL® ————, 0=2C5+6C4L—
1, 3 1+ 0oL+ 3L +Cy SAEl 3+ 6Cy SET
9.81mL? 9.81

These imply that Cy = _ 2O and Cy ™ and deflections of the beam are

24ET T 12EI’
9.81mL%x  9.81ma3 9.81ma? 9.81m

24FE171 + 12E1 24EIL ~ 24EIL(

The boundary-value problem for deflections of the beam is

y(x) = xt — 2023 + L32).

4 —_ m

Four antidifferentiations of this equation give

9.81ma*

y(x) = Cl + OQZZ? + 031172 + O4I3 — m

The boundary conditions require

9.81mL3 9.81mL?
_ _ _ 2 3_ _ 2
0=C;, 0=Cs, 0=C1+CoL+ C3L*+ C4L SAET 0=Cs+2C3L + 3C4L CEI
81mL .81
These imply that C5 = —giTn} and Cy = gls—EZl’ and deflections of the beam are
9.81mLxz?> 9.81ma®  9.81ma? 9.81m , 4,
S - = —2Lz® + L*2?).
y(@) 2Bl " 2Bl 2aBIL  24BIL"” v+ L)
3. The boundary-value problem for deflections of the beam is
d*y 1 (—-9.81m
A 0)=4'(0)=0 L)y=y"(L)=0.
=g () 0=y =0y =)
Four antidifferentiations of this equation give
9.81ma*
_ 2 3_
y(x) = C1 + Coz + Csa” + Cyx S1BIL
The boundary conditions require
9.81mL3 9.81mL
= = = L L? L3 - =2 L——=.
0=Cy, 0=Cy 0=C1+C3L+Cs + Cy SAET 0 Cs3+6Cy SET
81mL .81
These imply that C5 = —91867;} and Cy = %, and deflections of the beam are

9.81mLz?  5(9.81)mz3  9.81ma? 9.81m

- _ — = 3L%2% — 5023 + 224).
y(@) 16E1 ARET 24ETL REILCE™? "+ 227
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4. The boundary-value problem for deflections of the beam is

dy 1 {—9.L81m B 19.(15:2M (h(z) — hz — L/Q)]} y(0) =¢'(0)=0, y(L)=y"(L)=0.

dz* ~ EI

Since h(z) =1 for 0 < 2 < L, four integrations of this equation give

981ma*  981M

— Oy + Coz + Csz® + Caa® — —
y(w) = Cr+ Cow ot Coa™ + Caa” = — e = oyl

— (x — L/2)*h(z — L/2)].

The boundary conditions require

9.81mL>  9.81M

_ _ _ 2 3 _
0=Cy, 0=0Cy 0=C1+CoL+Cs3L”+CyL S51E] Tl

9.81mL 9.81M

(L% = (L/2)],

_ _ _ 2 _ 2
0=2C; +6CiL — ~ 7 L~ (L/2)7),
These imply that
oo _98ImL 9981 ML _5(9.81)m | 19(9.81)M
57 TT16EI 128E1 YT T48ET 128FE1

Deflections of the beam are
9.81mL 9(9.81)ML} - {5(9.81)m 19(9.81)M7

16E1 128FE1 48E1T1 128FE1
9.81ma* 9.81M
"~ 24EIL  12EIL

81
= 38i2 i {—(24m + 27TM)L?z* + (40m + 57M)La®

y(r) =

[2* — (x — L/2)*h(z — L/2)]

—16ma” — 32M [2* — (x — L/2)*h(z — L/2)] }.e
5. The boundary-value problem for deflections of the beam is
dy 1 {—9.81m 19.62M

det ~ EI L L

[h(z—L/4>—h<x—3L/4>1}, y(0) = y'(0) =0, y(L)=y"(L)=0.

Four integrations of this equation give

9.81mx*  9.81M
24E1L 12E1L

The boundary conditions require

y(x) = Cy + Cox + C3z? + Cya® — [(x — L/4)*h(x — L/4) — (x — 3L/4)*h(x — 3L/4)].

9.81mL?3 9.81M
= = = L L2 L3 — _
0=C1, 0=C5 0=C1+C3L+C35L"+Cy AE] OFIL
9.81mL 9.81M

0=2Cs+6CiL — — 2 — 77 [(BL/4)* — (L/4)%.

[(BL/4)* = (L/4)"),

These imply that

9.81mL B 11(9.81)M L Cn 5(9.81)m n 43(9.81)M
16ET 128F1 ° YT T48EI 384E1
Deflections of the beam are
81lmL 11(9.81)ML .81 43(9.81)M
y(z) = 9.81m (9.81) ]x2+[5(98)m+ 3(9.81) 3

Cy = —

~ 16EI  128EI 48ET 384F1
9.81mz*  9.81M
24EIL  12EIL

81
- % {—(24m + 33M)L2* + (40m + 43M ) Lz®

[(z — L/4)*h(z — L/4) — (z — 3L/4)*h(z — 3L/4)]

—16ma* — 32M[(x — L/4)*h(z — L/4) — (x — 3L/4)*h(z — 3L/4)]}.
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6. The boundary-value problem for deflections of the beam is

dy _ 1 [-98lm 19.62M

dz* ~ EI L L

(x—=1L/2)|, y(0)=¢(0) =0, y"(L)=y"(L)=0.

Four integrations of this equation give

9.81mz* 9.81M

— — 4 —
BTl 12BIL "~ L2 e = L/2).

y(x) = C1 + Cox + C32* + Cya® —

The boundary conditions require

9.81mL 9.81M(
2E1 EIL

0=C1, 0=0C3, 0=20C3+6C4L —

9.81m  19.62M
0=6Cs — = - ———(L/2).

L/2)?,

These imply that

_9.8lmL 3(9.81)ML ~9.81m  9.81M

Cs = ——1g7 SEI 9T GBI T GBI

Deflections of the beam are

y(@) = _9.81mL_3(9.81)ML} ) {MJFQ.&M 3
4E] 8EI 6E1 6E1
9.81maz* 9.81M

© 24EIL  12FIL

981 » o 4
= 51a7L - 3@m A+ 3M)LP + d(m + M)La? —ma® — 2M (v — L/2)*h(z — L/2)].

(x — L/2)*h(z — L/2)

The deflection of the right end of the board is

. 9.81 4 4 4 4
y(L) = 577 [-32m+ 3M)L* + 4(m + M)L* —mL* - 2M (L - L/2)’]

~ 9.81L3(24m + 41M)
a 192ET

7. The boundary-value problem for deflections of the beam is

d*y 1{—9.81m 19.62M

Ty L {08 Pl e =L/ 0 =y/0) =0 ¥ ="(L) =0

Since h(z) =1 for 0 < 2 < L, four integrations of this equation give

9.81ma*  9.81M et
— €z
24EIL  12EIL

y(a) = C1 + Cox + C32® + Cya® — — (x — L/2)*h(z — L2)].

The boundary conditions require

9.81mL 9.81M

= = =2 L- - L? — (L/2)°
0=C1, 0=0Cy 0=2C3+60C, SET BIL [ (L/2)7],
9.81m  19.62M
0= 64—~z — —5=— (L — (L/2)].
These imply that
o _9.8lmL  98IML o, _ 98lm N 9.81M
YY) SEI ' YT BRI 6EI

Deflections of the beam are
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1ET T REI 6EI ' GEI
_9.81mat  9.81M ot
24EIL  12EIL

225’;L{_3(2m + M)L?*z* + 4(m + M)L2® — ma* — 2M[2* — (x — L/2)*h(z — L/2)]}.

981mL 98IML\ , [98lm 9.81M\
y(z) = — z

— (= L/2)*h(z — L/2)]

The deflection of the right end of the board is

y(L) = 225;1: [-3(2m + M)L* + 4(m + M)L* —mL* — 2M[L* — (L/2)"])

9.81L3(24m + 7M)
192E1

This is less than the deflection in Exercise 6.

8. The boundary-value problem for deflections of the beam is

4 — m .
dy 1 { 9~L81 _ 19 ?M [h(z — L/4) — h(z — 3L/4)]} , y(0)=9'(0)=0, y"(L)=y"(L)=0.

di* — EI

Four integrations of this equation give

9.81mx*  9.81M
24E1L 12E1L

The boundary conditions require

y(x) = Cy + Cox + Czz? + Cya® — [(x — L/4)*h(x — L/4) — (x — 3L/4)*h(z — 3L/4)].

0=C1, 0=0Cy 0=203+6C4L— 98ImL _ 9'81M[(3L/4)2 — (L/4)%,

2E1 EIL
9.81m  19.62M

0=6Cy —

These imply that

9.81mL  9.81ML o, 98Im | 981M
AET AET YT 6EI 6ET

C3 =
Deflections of the beam are
(x) _ _9.81mL _ 9.81ML 9 9.81m n 9.81M 3
v\ = AET AET 6EI ' 6EI
9.81mat 9.81M
24F1TL 12E1L

.81
= %{—G(m + M)L*z? + 4(m + M) Lz — ma*

[(x — L/4)*h(x — L/4) — (x — 3L/4)*h(x — 3L/4)]

—2M|(z — L/4)*h(z — L/4) — (x — 3L/4)*h(x — 3L/4)]}.

The deflection of the right end of the board is

y(L) = %{—G(m + M)L* + 4(m + M)L* —mL* — 2M[(L — L/4)* — (L — 3L/4)"]}

~ 9.81L3%(24m + 21M)
o 192E7T

This is less than the deflection in Exercise 6, but more than that in Exercise 7.



