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CHAPTER 5

EXERCISES 5.1

1. To express the solution in the form A cos (40t − φ), we set

1
10

cos 40t−
1
20

sin 40t = A cos (40t− φ) = A[cos 40t cosφ + sin 40t sin φ].

Because sin 40t and cos 40t are linearly independent functions we equate coefficients to obtain

1
10

= A cosφ,
−1
20

= A sinφ.

When these are squared and added,

1
100

+
1

400
= A2 =⇒ A =

√
5

20
.

It now follows that φ must satisfy the equations

1
10

=
√

5
20

cosφ,
−1
20

=
√

5
20

sin φ.

One angle satisfying these is φ = −0.464 radians. The position function of the mass can therefore

be expressed in the form
√

5
20

cos (40t + 0.464).

2. With the coordinate system of Figure 5.6, the initial-value problem describing the position x(t) of
the mass is

(1)
d2x

dt2
+ 16x = 0, x(0) = −1/10, x′(0) = 0.

The auxiliary equation is m2+16 = 0 with solutions m = ±4i. A general solution of the differential
equation is x(t) = C1 cos 4t+C2 sin 4t. To satisfy the initial conditions, we must have −1/10 = C1

and 0 = 4C2. Thus, x(t) = −(1/10) cos4t m.

3. With the coordinate system of Figure 5.3, the initial-value problem describing the position x(t) of
the mass is

1
10

d2x

dt2
+ 100x = 0, x(0) =

1
20

, x′(0) = 0.

The auxiliary equation is m2 + 1000 = 0 with solutions m = ±10
√

10i. A general solution of the
differential equation is x(t) = C1 cos 10

√
10t + C2 sin 10

√
10t. To satisfy the initial conditions, we

must have 1/20 = C1 and 0 = 10
√

10C2.
Thus, x(t) = (1/20) cos 10

√
10t m. A graph

of this function is shown to the right. The
amplitude of the oscillations is 5 cm, the
period is 2π/(10

√
10) =

√
10π/50 s, and

the frequency is 50/(
√

10π) = 5
√

10/π Hz.

x

t0.5 1

0.05

4. With the coordinate system of Figure 5.3, the initial-value problem describing the position x(t) of
the mass is

1
10

d2x

dt2
+ 100x = 0, x(0) = 0, x′(0) = −3.

The auxiliary equation is m2 + 1000 = 0 with solutions m = ±10
√

10i. A general solution of the
differential equation is x(t) = C1 cos 10

√
10t + C2 sin 10

√
10t. To satisfy the initial conditions, we

must have 0 = C1 and −3 = 10
√

10C2. Thus,
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x(t) = (−3
√

10/100) sin 10
√

10t m. A graph
of this function is shown to the right. The
amplitude of the oscillations is 3

√
10/100 m,

the period is 2π/(10
√

10) =
√

10π/50 s, and
the frequency is 50/(

√
10π) = 5

√
10/π Hz.

x

t0.5 1

0.095

5. With the coordinate system of Figure 5.3, the initial-value problem describing the position x(t) of
the mass is

1
10

d2x

dt2
+ 100x = 0, x(0) =

1
20

, x′(0) = −3.

The auxiliary equation is m2 + 1000 = 0 with solutions m = ±10
√

10i. A general solution of the
differential equation is x(t) = C1 cos 10

√
10t + C2 sin 10

√
10t. To satisfy the initial conditions, we

must have 1/20 = C1 and −3 = 10
√

10C2. Thus,

x(t) =
1
20

cos 10
√

10t − 3
√

10
100

sin 10
√

10t m.
A graph of this function is shown to the
right. The amplitude of the oscillations is√√√√

(
1
20

)2

+

(
−3

√
10

100

)2

=
√

115
100

m.

The period is 2π/(10
√

10) =
√

10π/50 s, and

x

t0.5 1

0.107

0.05

the frequency is 50/(
√

10π) = 5
√

10/π Hz.

6. With the coordinate system of Figure 5.3, the initial-value problem describing the position x(t) of
the mass is

1
10

d2x

dt2
+ 100x = 0, x(0) = − 1

20
, x′(0) = −3.

The auxiliary equation is m2 + 1000 = 0 with solutions m = ±10
√

10i. A general solution of the
differential equation is x(t) = C1 cos 10

√
10t + C2 sin 10

√
10t. To satisfy the initial conditions, we

must have −1/20 = C1 and −3 = 10
√

10C2. Thus,

x(t) = − 1
20

cos 10
√

10t − 3
√

10
100

sin 10
√

10t m.
A graph of this function is shown to the
right. The amplitude of the oscillations is√√√√

(
−1
20

)2

+

(
−3

√
10

100

)2

=
√

115
100

m.

The period is 2π/(10
√

10) =
√

10π/50 s, and

x

t0.5 1

0.107

-0.05

the frequency is 50/(
√

10π) = 5
√

10/π Hz.

7. (a) With the coordinate system of Figure 5.6, the initial-value problem describing the position x(t)
of the mass is

2
d2x

dt2
+ 1000x = 0, x(0) = − 3

100
, x′(0) = −2.

The auxiliary equation is 2m2 + 1000 = 0 with solutions m = ±10
√

5i. A general solution of the
differential equation is x(t) = C1 cos 10

√
5t + C2 sin 10

√
5t. To satisfy the initial conditions, we

must have −3/100 = C1 and −2 = 10
√

5C2. Thus,
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x(t) = − 3
100

cos 10
√

5t −
√

5
25

sin 10
√

5t m.
A graph of this function is shown to the
right. The amplitude of the oscillations is√√√√

(
−3
100

)2

+

(
−
√

5
25

)2

=
√

89
100

m.

The period is 2π/(10
√

5) =
√

5π/25 s, and

x

t0.5 1

0.094

-0.03

the frequency is 25/(
√

5π) = 5
√

5/π Hz.
(b) The initial conditions affect the amplitude, but not the period or frequency.

8. With a mass of 8 kg, the initial-value problem for displacements is

8
d2x

dt2
+ 1000x = 0, x(0) = − 3

100
, x′(0) = −2.

The auxiliary equation is 8m2 + 1000 = 0 with solutions m = ±5
√

5i. A general solution of the
differential equation is x(t) = C1 cos 5

√
5t + C2 sin 5

√
5t. The period is 2π/(5

√
5) = 2

√
5π/25 s,

double that when the mass was 2 kg. The frequency will be half its previous value.

9. With a spring constant of 4000 N/m, the initial-value problem for displacements is

2
d2x

dt2
+ 4000x = 0, x(0) = −

3
100

, x′(0) = −2.

The auxiliary equation is 2m2 + 4000 = 0 with solutions m = ±20
√

5i. A general solution of the
differential equation is x(t) = C1 cos 20

√
5t + C2 sin 20

√
5t. The period is 2π/(20

√
5) =

√
5π/50

s, half that when the spring constant was 1000 N/m. The frequency will be double its previous
value.

10. With the coordinate system of Figure 5.6, the differential equation describing the position x(t) of
the mass is

2
d2x

dt2
+ kx = 0.

The auxiliary equation is 2m2 + k = 0 with solutions m = ±
√

k/2i. A general solution of
the differential equation is x(t) = C1 cos

√
k/2t + C2 sin

√
k/2t. The period of the oscillations is

2π/
√

k/2 and therefore the frequency is
√

k/2/(2π) Hz. Since this must be 3, we set
√

k/2/(2π) =
3, from which k = 72π2 N/m.

11. With the coordinate system of Figure 5.6, the initial-value problem describing the position x(t) of
the mass is

M
d2x

dt2
+ kx = 0, x(0) = x0, x′(0) = v0.

The auxiliary equation is Mm2 + k = 0 with solutions m = ±
√

k/Mi. A general solution of the
differential equation is x(t) = C1 cos

√
k/Mt + C2 sin

√
k/Mt. To satisfy the initial conditions, we

must have x0 = x(0) = C1 and v0 = x′(0) =
√

k/MC2. Thus,

x(t) = x0 cos

√
k

M
t +

√
M

k
v0 sin

√
k

M
t.

If we set this equal to A sin (
√

k/Mt + φ), then

x0 cos

√
k

M
t +

√
M

k
v0 sin

√
k

M
t = A

(
sin

√
k

M
t cosφ + cos

√
k

M
t sin φ

)
.

This implies that
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x0 = A sin φ,

√
M

k
v0 = A cosφ.

When these are squared and added,

A2 = x2
0 +

Mv2
0

k
=⇒ A =

√
x2

0 +
Mv2

0

k
.

It then follows that

sinφ =
x0

A
, cosφ =

√
M/kv0

A
.

12. The period of the oscillations in Exercise 11 is 2π/
√

k/M = 2π
√

M/k. This formula makes it clear
that when M is doubled, the period is increased by a factor of

√
2. It follows that the frequency

must be decreased by the same factor.
13. (a) When damping is ignored, the differential equation describing displacements of a mass is

M
d2x

dt2
+ kx = 0.

Since velocity is a maximum when acceleration is zero, it follows that velocity is a maximum when
x = 0; that is, the mass passes through the equilibrium position.
(b) Maximum acceleration occurs when d3x/dt3 = 0, and the differential equation implies that this
occurs when dx/dt = 0; that is, when the velocity of the mass is zero. This occurs when the mass
is at its maximum distance from equilibrium.

14. If we use differential equation 5.7 to describe oscillations of the mass, there is no difference in the
analysis.

15. (a) With the coordinate system of Figure 5.6, the initial-value problem describing the position x(t)
of the mass is

1
10

d2x

dt2
+ 40x = 0, x(0) = − 1

50
, x′(0) = 10.

The auxiliary equation is m2 + 400 = 0 with solutions m = ±20i. A general solution of the
differential equation is x(t) = C1 cos 20t + C2 sin 20t. To satisfy the initial conditions, we must
have −1/50 = C1 and 10 = 20C2. Thus,

x(t) = − 1
50

cos 20t +
1
2

sin 20t m.

(b) To simplify the remaining parts of the exercise we express x(t) in the form

− 1
50

cos 20t +
1
2

sin 20t = A sin (20t + φ) = A(sin 20t cosφ + cos 20t sin φ).

These imply that

− 1
50

= A sin φ,
1
2

= A cosφ.

When these are squared and added,

A2 =
(
−1
50

)2

+
(

1
2

)2

=
626
2500

=⇒ A =
√

626
50

.

With this value for A,

sin φ = − 1√
626

, cosφ =
25√
626

.

One of many expressions for φ is φ = −Sin−1(1/
√

626). Thus,
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x(t) =
√

626
50

sin (20t − θ), where θ = Sin−1

(
1√
626

)
.

The amplitude of the motion is
√

626/50 m, the period is π/10 s and the frequency is 10/π Hz.
(c) The velocity of the mass is zero when

0 = x′(t) =
20

√
626

50
cos (20t − θ) =⇒ 20t − θ =

(2n + 1)π
2

=⇒ t =
(2n + 1)π

40
+

θ

20
,

where n ≥ 0 is an integer.
(d) The mass passes through the equilibrium point when

0 = x(t) =⇒ 20t− θ = nπ =⇒ t =
θ

20
+

nπ

20
,

where n ≥ 0 is an integer.
(e) The mass is 1 cm above its equilibrium position when

1
100

=
√

626
50

sin (20t − θ) =⇒ sin (20t − θ) =
1

2
√

626
.

This is true when

20t− θ =





Sin−1

(
1

2
√

626

)
+ 2nπ

π − Sin−1

(
1

2
√

626

)
+ 2nπ

=⇒ t =





1
20

Sin−1

(
1

2
√

626

)
+

θ

20
+

nπ

10

− 1
20

Sin−1

(
1

2
√

626

)
+

θ

20
+

(2n + 1)π
20

,

where n ≥ 0 is an integer.
(f) The velocity of the mass is 12 if, and when,

12 =
2
√

626
5

cos (20t − θ) =⇒ cos (20t − θ) =
30√
626

> 1.

Hence, the mass never attains this velocity.
(g) The mass is at maximum height when

√
626
50

=
√

626
50

sin (20t− θ) =⇒ sin (20t− θ) = 1 =⇒ 20t − θ =
(4n + 1)π

2

=⇒ t =
θ

20
+

(4n + 1)π
40

,

where n ≥ 0 is an integer. This happens for the second time when n = 1, in which case t =
θ/20 + π/8.

16. (a) When we write expression 5.9 in the form A sin (ωt − φ),

C1 cosωt + C2 sinωt = A sin (ωt − φ) = A(sin ωt cosφ − cosωt sinφ).

When we equate coefficients of cosωt and sin ωt, we obtain

C1 = −A sinφ, C2 = A cosφ =⇒ sinφ = −C1

A
, cosφ =

C2

A
.

Similar derivations give the equations in part (b) and (c).

17. If s is the stretch in the spring at equilibrium, then ks = Mg so that s = Mg/k. This is the initial
displacement of the mass relative to the equilibrium position. The initial-value problem describing
the position x(t) of the mass relative to the equilibrium position is

M
d2x

dt2
+ kx = 0, x(0) =

Mg

k
, x′(0) = 0.
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The auxiliary equation is Mm2 + k = 0 with solutions m = ±
√

k/Mi. A general solution of the
differential equation is x(t) = C1 cos (

√
k/Mt) + C2 sin (

√
k/Mt). To satisfy the initial conditions,

we must have Mg/k = C1 and 0 =
√

k/MC2. Thus,

x(t) =
Mg

k
cos

√
k

M
t m.

18. According to equation 5.4, the differential equation for displacement of the mass is

M
d2x

dt2
+ kx = kA sinωt,

subject to the initial conditions x(0) = x0 and x′(0) = v0. Since roots of the auxiliary equation
Mm2 + k = 0 are m = ±

√
k/Mi, a general solution of the associated homogeneous equation is

xh(t) = C1 cos

√
k

M
t + C2 sin

√
k

M
t.

Assuming a particular solution of the form xp(t) = B sin ωt + D cosωt, and substituting into the
differential equation,

M(−ω2B sinωt − ω2D cosωt) + k(B sinωt + D cosωt) = kA sin ωt.

Equating coefficients of sinωt and cosωt gives

−Mω2B + kB = kA, −Mω2D + kD = 0.

Thus, D = 0 and B = kA/(k − Mω2), and

x(t) = C1 cos

√
k

M
t + C2 sin

√
k

M
t +

kA

k − Mω2
sinωt.

The initial conditions require

x0 = C1, v0 =

√
k

M
C2 +

kAω

k − Mω2
.

The second of these gives C2 =

√
M

k

(
v0 −

kA

k − Mω2

)
, and

x(t) = x0 cos

√
k

M
t +

√
M

k

(
v0 −

kA

k − Mω2

)
sin

√
k

M
t +

kA

k − Mω2
sin ωt m.

19. When the surface of the liquid in the right half of the tube is y metres above the equilibrium
position, the mass of liquid in the right tube above the surface in the left tube is 2πr2ρy. The
force of gravity on this much of the liquid acts on all of the liquid in the tube. In other words, if
M represents the mass of liquid in the tube, Newton’s second law for motion of the surface in the
right half of the tube is

M
d2y

dt2
= −2πr2ρgy.

Notice that this equation is valid even when the level of liquid in the right part of the tube is
below its equilibrium position. Since the auxiliary equation is Mm2 + 2πr2ρg = 0, with roots
m = ±

√
2πr2ρg/M , displacement of the right surface is of the form

y(t) = C1 cos

√
2πr2ρg

M
t + C2 sin

√
2πr2ρg

M
t.
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This is simple harmonic motion with period
2π√

2πr2ρg/M
=

1
r

√
2πM

ρg
s.

20. From time t = 0 when the container is attached to the spring until water has completely drained
out, the mass of the container is M − rt.
(a) With the coordinate system of Figure 5.5, Newton’s second law 3.4 gives

d

dt

[
(M − rt)

dy

dt

]
= −(M − rt)g − β

dy

dt
− ky.

By expanding the first term, we can write the differential equation in the form

(M − rt)
d2y

dt2
+ (β − r)

dy

dt
+ ky = −(M − rt)g.

The initial-value problem is this differential equation subject to y(0) = 0 = y′(0).
(b) Consider now the coordinate system of Figure 5.6 where x = 0 corresponds to the position of
the container were it full and at equilibrium. The stretch s in the spring at this position is given
by the equation ks − Mg = 0. Newton’s second law gives

d

dt

[
(M − rt)

dx

dt

]
= −(M − rt)g − β

dx

dt
+ k(s − x).

When we expand and use the equation Mg − ks = 0, we find

(M − rt)
d2x

dt2
+ (β − r)

dx

dt
+ kx = rgt.

The initial-value problem is this differential equation subject to x(0) = Mg/k and x′(0) = 0.
Because the coefficient of the second derivative in both equations is not constant, we cannot solve
the differential equation with the techniques that we now have available.

21. (a) Since the cube floats half submerged,
its density is one-half that of water, namely
500 kg/m3. Suppose we let x denote the
distance of the midpoint of the cube below
the surface of the water. When the midpoint
is x m below the surface, the force on the
cube is the buoyant force due to Archimedes’
principle less the force of gravity,

−9810L2

(
L

2
+ x

)
+ 4905L3 = −9810L2x.

x

x

L

L

L

=0

/2

The differential equation describing oscillations of the cube is therefore

500L3d2x

dt2
= −9810L2x =⇒ x′′ +

981
50L

x = 0.

(b) The auxiliary equation m2 + 981/(50L) = 0 has solutions m = ±
√

981/(50L)i, and therefore

x(t) = C1 cos

√
981
50L

t + C2 sin

√
981
50L

t.

The frequency of the oscillations is

√
981/(50L)

2π
=

0.705√
L

Hz.
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22. Let BC be the line on the cylinder that resides in the surface of
the water when the cylinder is at equilibrium. If x represents
the depth of BC below the surface when the cylinder is in motion,
then Newton’s second law for the acceleration of the cylinder is

M
d2x

dt2
= −9.81(1000)(Ax),

where M is the mass of the cylinder and A is its cross-sectional
area. Since M = ρAL, where L is the length of the cylinder,
and ρ is its density

x
L B C

x=0

ρAL
d2x

dt2
= −9810Ax =⇒ Lρ

d2x

dt2
+ 9810x = 0.

The auxiliary equation Lρm2 + 9810 = 0 has roots m = ±
√

9810/(Lρ)i, so that
x(t) = C1 cos

√
9810/(Lρ)t + C2 sin

√
9810/(Lρ)t. Since the period of the oscillations is 4 s,

it follows that 2π
√

Lρ/9810 = 4 =⇒ L = 39 240/ρπ2. The mass of the cylinder is therefore
ρAL = ρ(π/100)(39 240/(ρπ2)) = 124.9 kg.

23. Because the sphere floats half submerged, its
density is one-half that of water, namely
500 kg/m3. The resultant vertical force
on the sphere when its centre is y m below
the surface is the buoyant force due to the
water displaced by the sphere less the force
of gravity on the sphere,

−9810V + 4905
(

4
3

)
πR3, z

x z R

y

2 2 2=+

x

( )-y

,y

where V is the volume of water displaced by the sphere when its centre is y m below the surface.
We can calculate V with the following double iterated integral,

V =
∫ R+y

0

∫ √
R2−(z−y)2

0

2πx dx dz = 2π

∫ R+y

0

{
x2

2

}√R2−(z−y)2

0

dz

= π

∫ R+y

0

[R2 − (z − y)2] dz = π

{
R2z − (z − y)3

3

}R+y

0

=
π

3
(2R3 + 3R2y − y3).

The resultant force on the sphere when its centre is at depth y is therefore

−9810π

3
(2R3 + 3R2y − y3) +

19 620
3

πR3 =
9810π

3
(y3 − 3R2y).

Newton’s second law now gives

4
3
πR3(500)

d2y

dt2
=

9810π

3
(y3 − 3R2y) =⇒ d2y

dt2
= −3(9.81)

2R3

(
R2y − y3

3

)
.

This is not a linear equation.
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EXERCISES 5.2

1. The initial-value problem describing the position x(t) of the mass is

(1)
d2x

dt2
+

1
10

dx

dt
+ 16x = 0, x(0) = − 1

10
, x′(0) = 0.

The auxiliary equation is 10m2 + m + 160 = 0 with solutions m = (−1 ± 9
√

79i)/20. A general
solution of the differential equation is x(t) = e−t/20[C1 cos (9

√
79t/20) + C2 sin (9

√
79t/20)]. To

satisfy the initial conditions, we must have −1/10 = C1 and 0 = −C1/20 + 9
√

79C2/20. These
give

x(t) = e−t/20

(
− 1

10
cos

9
√

79t
20

−
√

79
7110

sin
9
√

79t
20

)
m.

2. The initial-value problem describing the position x(t) of the mass is

(1)
d2x

dt2
+ 10

dx

dt
+ 16x = 0, x(0) = − 1

10
, x′(0) = 0.

The auxiliary equation is m2 +10m+16 = 0 with solutions m = −2, −8. A general solution of the
differential equation is x(t) = C1e

−2t + C2e
−8t. The initial conditions require −1/10 = C1 + C2

and 0 = −2C1 − 8C2. These give C1 = −2/15 and C2 = 1/30. Thus, x(t) = (e−8t − 4e−2t)/30 m.
3. The differential equation for motion with an unspecified damping factor is

(1)
d2x

dt2
+ β

dx

dt
+ 16x = 0.

Critically damped motion ocurs when roots of the auxiliary equation m2 + βm + 16 = 0 are real
and equal, and this occurs when the discriminant of the quadratic is equal to zero,

β2 − 4(1)(16) = 0 =⇒ β = 8.

4. The initial-value problem describing the position x(t) of the mass is

1
10

d2x

dt2
+ 40

dx

dt
+ 4000x = 0, x(0) =

1
50

, x′(0) = −4.

The auxiliary equation is m2 + 400m + 40 000 = 0 with solutions m = −200,−200. A general
solution of the differential equation is x(t) = (C1 + C2t)e−200t. To satisfy the initial conditions,
we must have

1
50

= C1, −4 = −200C1 + C2 =⇒ C2 = 0.

Thus, x(t) = (1/50)e−200t m. Since this function is never equal to zero, the mass does not pass
through the equilibrium position.

5. The initial-value problem describing the position x(t) of the mass is

1
10

d2x

dt2
+ 40

dx

dt
+ 4000x = 0, x(0) =

1
50

, x′(0) = −10.

The auxiliary equation is m2 + 400m + 40 000 = 0 with solutions m = −200,−200. A general
solution of the differential equation is x(t) = (C1 + C2t)e−200t. To satisfy the initial conditions,
we must have

1
50

= C1, −10 = −200C1 + C2 =⇒ C2 = −6.

Thus, x(t) =
(

1
50

− 6t

)
e−200t m. The mass passes through the equilibrium position if this func-

tion is ever equal to zero,
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(

1
50

− 6t

)
e−200t = 0 =⇒ t =

1
300

s.

6. (a) The initial-value problem describing the position x(t) of the mass is

(1)
d2x

dt2
+ 15

dx

dt
+ 50x = 0, x(0) =

1
20

, x′(0) = 3.

The auxiliary equation is m2 + 15m + 50 = 0 with solutions m = −5,−10. A general solution of
the differential equation is x(t) = C1e

−5t +C2e
−10t. To satisfy the initial conditions, we must have

1
20

= C1 + C2, 3 = −5C1 − 10C2 =⇒ C1 =
7
10

, C2 = −13
20

.

Thus, x(t) =
1
20
(
14e−5t − 13e−10t

)
m.

(b) The mass passes through the equilibrium position if this function is ever equal to zero,

1
20
(
14e−5t − 13e−10t

)
= 0 =⇒ e5t =

13
14

.

Since this cannot happen for t > 0, the mass does not pass through its equilibrium position.
(c) The mass is 1 cm above the equilibrium position when

1
20
(
14e−5t − 13e−10t

)
=

1
100

=⇒ e10t − 70e5t + 65 = 0.

Solutions of this quadratic equation in e5t are

e5t =
70±

√
4900− 4(65)

2
= 35± 2

√
290.

Since t must be positive, we take the positive root,
in which case t = (1/5) ln (35 + 2

√
290) s.

0.5 1

0.1

x

t

0.05

7. (a) The initial-value problem describing the position x(t) of the mass is

(1)
d2x

dt2
+ 15

dx

dt
+ 50x = 0, x(0) =

1
20

, x′(0) = −3
4
.

The auxiliary equation is m2 + 15m + 50 = 0 with solutions m = −5,−10. A general solution of
the differential equation is x(t) = C1e

−5t +C2e
−10t. To satisfy the initial conditions, we must have

1
20

= C1 + C2, −
3
4

= −5C1 − 10C2 =⇒ C1 = −
1
20

, C2 =
1
10

.

Thus, x(t) =
1
20
(
2e−10t − e−5t

)
m.

(b) The mass passes through the equilibrium position if this function is ever equal to zero,

1
20
(
2e−10t − e−5t

)
= 0 =⇒ e5t = 2 =⇒ t =

1
5

ln 2 s.

(c) The mass is 1 cm above the equilibrium position when

1
20
(
2e−10t − e−5t

)
=

1
100

=⇒ e10t + 5e5t − 10 = 0.
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Solutions of this quadratic equation in e5t are

e5t =
−5±

√
25 + 40
2

=
−5±

√
65

2
.

Since t must be positive, we take the positive root,

in which case t = (1/5) ln

(
−5 +

√
65

2

)
s.

The figure makes it clear that the mass never
never reaches 1 cm below the equilibrium position.

0.05

-0.01

0.5
1 t

We can confirm this algebraically by setting

1
20

(2e−10t − e−5t) = − 1
100

=⇒ e10t − 5e5t + 10 = 0.

Solutions of this quadratic are e5t =
5 ±

√
25− 40
2

, which are complex.

8. (a) The initial-value problem describing the position x(t) of the mass is

(1)
d2x

dt2
+ 15

dx

dt
+ 50x = 0, x(0) =

1
20

, x′(0) = −3.

The auxiliary equation is m2 + 15m + 50 = 0 with solutions m = −5,−10. A general solution of
the differential equation is x(t) = C1e

−5t +C2e
−10t. To satisfy the initial conditions, we must have

1
20

= C1 + C2, −3 = −5C1 − 10C2 =⇒ C1 = −1
2
, C2 =

11
20

.

Thus, x(t) =
1
20
(
11e−10t − 10e−5t

)
m.

(b) The mass passes through the equilibrium position if this function is ever equal to zero,

1
20
(
11e−10t − 10e−5t

)
= 0 =⇒ e5t =

11
10

=⇒ t =
1
5

ln (11/10) s.

(c) The mass is 1 cm above the equilibrium position when

1
20
(
11e−10t − 10e−5t

)
=

1
100

=⇒ e10t + 50e5t − 55 = 0.

Solutions of this quadratic equation in e5t are

e5t =
−50±

√
2500 + 220
2

= −25± 2
√

170.

Since t must be positive, we take the positive root,
in which case t = (1/5) ln (2

√
170− 25) s.

0.5 1

x

t

0.05

0.01

-0.05

-0.1

The mass is 1 cm below the equilibrium position when

1
20
(
11e−10t − 10e−5t

)
= − 1

100
=⇒ e10t − 50e5t + 55 = 0.

Solutions of this quadratic equation in e5t are

e5t =
50±

√
2500− 220
2

= 25 ±
√

570 =⇒ t =
1
5

ln (25 ±
√

570) s.

9. (a) The initial-value problem describing the position x(t) of the mass is

2
d2x

dt2
+ 4

dx

dt
+ 200x = 0, x(0) =

1
10

, x′(0) = 5.
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The auxiliary equation is 2m2 + 4m + 200 = 0 with solutions m = −1± 3
√

11i. A general solution
of the differential equation is x(t) = e−t[C1 cos (3

√
11t) + C2 sin 3

√
11t)]. To satisfy the initial

conditions, we must have

1
10

= C1, 5 = −C1 + 3
√

11C2 =⇒ C2 =
17

√
11

110
.

Thus, x(t) =
e−t

110

[
11 cos (3

√
11t) + 17

√
11 sin (3

√
11t)

]
m.

(b) Maximum distance from equilibrium is attained when velocity is equal to zero for the first
time,

0 = x′(t) = − e−t

110

[
11 cos (3

√
11t) + 17

√
11 sin (3

√
11t)

]
+

e−t

110

[
−33

√
11 sin (3

√
11t) + 561 cos (3

√
11t)

]
.

This equation implies that

550 cos (3
√

11t) = 50
√

11 sin (3
√

11t) =⇒ tan (3
√

11t) =
√

11 =⇒ t =
1

3
√

11
Tan−1

√
11 +

nπ

3
√

11
,

where n ≥ 0 is an integer. We choose n = 0 for maximum distance, in which case

t =
1

3
√

11
Tan−1

√
11. When this is substituted into x(t), the result is x = 0.457 m or 45.7 cm.

(c) The mass passes through the equilibrium position when

0 = x(t) =
e−t

110

[
11 cos (3

√
11t) + 17

√
11 sin (3

√
11t)

]
=⇒ tan (3

√
11t) = −

√
11

17
.

Thus, t =
1

3
√

11
Tan−1

(
−
√

11
17

)
+

nπ

3
√

11
, where n ≥ 1 is an integer. When we choose n = 1 for

the first pass through the origin, t =
1

3
√

11
Tan−1

(
−
√

11
17

)
+

π

3
√

11
≈ 0.296 s.

10. (a) The initial-value problem describing the position x(t) of the mass is

(1)
d2x

dt2
+ 2

dx

dt
+ 40x = 0, x(0) = −

1
20

, x′(0) = 0.

The auxiliary equation is m2 + 2m + 40 = 0 with solutions m = −1±
√

39i. A general solution of
the differential equation is x(t) = e−t(C1 cos

√
39t + C2 sin

√
39t). To satisfy the initial conditions,

we must have

−
1
20

= C1, 0 = −C1 +
√

39C2 =⇒ C2 = −
√

39
780

.

Thus, x(t) = − e−t

780

[
39 cos

√
39t +

√
39 sin

√
39t
]

m. We now set

− 1
780

(39 cos
√

39t +
√

39 sin
√

39t) = A sin (
√

39t + φ) = A(sin
√

39t cosφ + cos
√

39t sin φ).

This implies that

A cosφ = −
√

39
780

, A sin φ = − 39
780

.

Squaring and adding these gives

A2 =
39

7802
+

392

7802
=

1
390

=⇒ A =
1√
390

.

Hence,
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cosφ = −
√

39
√

390
780

, sin φ = −39
√

390
780

.

One solution of these equations is φ = −1.73. Thus, x(t) =
e−t

√
390

sin (
√

39t − 1.73).

(b) The mass passes through the equilibrium position when

0 = x(t) =
1√
390

sin (
√

39t − 1.73) =⇒
√

39t − 1.73 = nπ =⇒ t =
nπ + 1.73√

39
,

where n ≥ 0 is an integer. The distance between successive times is π/
√

39. The differential
equation for the undamped system is

d2x

dt2
+ 40x = 0,

with auxiliary equation m2 + 40 = 0. Roots are m = ±2
√

[10]i, so that the solution of the
differential equation is x(t) = C1 cos 2

√
10t +C2 sin 2

√
10t. The period of undamped oscillations is

therefore 2π/(2
√

10) = π/
√

10. This is not the same as 2π/
√

39.

11. (a) The initial-value problem describing the position x(t) of the mass is

M
d2x

dt2
+ β

dx

dt
+ kx = 0, x(0) = x0, x′(0) = v0.

The auxiliary equation is Mm2 + βm + k = 0 with solutions m =
−β ±

√
β2 − 4kM

2M
. Since the

motion is critically damped, β2 − 4kM = 0, and the auxiliary has equal roots m = −β/(2M). A
general solution of the differential equation is x(t) = (C1 + C2t)e−βt/(2M). To satisfy the initial
conditions, we must have

x0 = C1, v0 = C2 −
β

2M
C1 =⇒ C2 = v0 +

βx0

2M
.

Thus, x(t) =
[
x0 +

(
v0 +

βx0

2M

)
t

]
e−βt/(2M) m. The mass passes through the equilibrium position

when

0 = x(t) =
[
x0 +

(
v0 +

βx0

2M

)
t

]
e−βt/(2M) =⇒ t = − x0

v0 + βx0/(2M)
.

When x0 and v0 are both positive, or both are negative, this value is negative, an unacceptable
value.
(b) The equation defining t in part (a) yields only one value; that is, there can be at most one
time at which the mass passes through equilibrium. There will be one when the equation yields a
positive value for t. This occurs when

−
x0

v0 + βx0/(2M)
> 0.

When x0 > 0, this requires

v0 +
βx0

2M
< 0 =⇒ v0

x0
+

β

2M
< 0.

On the other hand when x0 < 0, we must have

v0 +
βx0

2M
> 0 =⇒ v0

x0
+

β

2M
< 0.

12. (a) The initial-value problem describing the position x(t) of the mass is
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M
d2x

dt2
+ β

dx

dt
+ kx = 0, x(0) = x0, x′(0) = v0.

The auxiliary equation is Mm2 + βm + k = 0 with solutions m =
−β ±

√
β2 − 4kM

2M
. Since the

motion is overdamped, β2 − 4kM > 0, and the auxiliary has real roots. Suppose we denote them

by ω1 =
−β −

√
β2 − 4kM

2M
and ω2 =

−β +
√

β2 − 4kM

2M
. A general solution of the differential

equation is x(t) = C1e
ω1t + C2e

ω2t. To satisfy the initial conditions, we must have

x0 = C1 + C2, v0 = ω1C1 + ω2C2 =⇒ C1 =
ω2x0 − v0

ω2 − ω1
, C2 =

v0 − ω1x0

ω2 − ω1
.

Thus,

x(t) =
(

ω2x0 − v0

ω2 − ω1

)
eω1t +

(
v0 − ω1x0

ω2 − ω1

)
eω2t m.

The mass passes through the equilibrium position when

0 = x(t) =
(

ω2x0 − v0

ω2 − ω1

)
eω1t +

(
v0 − ω1x0

ω2 − ω1

)
eω2t.

This implies that

e
√

β2−4kMt/M =
1 −

ω2x0

v0

1 − ω1x0

v0

.

When x0 and v0 are both positive, or both are negative, the right side of this equation is between
0 and 1, an unacceptable value.
(b) The equation defining t in part (a) yields only one value; that is, there can be at most one
time at which the mass passes through equilibrium. There will be one when the equation yields a
positive value for t. This occurs when

1 − ω2x0

v0

1 −
ω1x0

v0

> 1.

If 1 − ω1x0/v0 > 0, this requires

1 −
ω2x0

v0
> 1 −

ω1x0

v0
=⇒ ω2 < ω1,

a contradiction. Thus, we must have

1 − ω1x0

v0
< 0 =⇒ v0

x0
− ω1 > 0 =⇒ β +

√
β2 − 4kM

2M
+

v0

x0
< 0.

13. If x measures displacement of the platform from its equilibrium position, then the differential
equation for the combined motion is

(
W + w

g

)
d2x

dt2
+ β

dx

dt
+ kx = 0.

The auxiliary equation is
(

W + w

g

)
m2 + βm + k = 0 with solutions

m =
−β ±

√
β2 − 4k(W + w)/g

2(W + w)/g
.
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Oscillations occur for large w, and for small values of w no oscillations occur. The largest value of
w for no oscillations occurs when

β2 − 4k(W + w)
g

= 0 =⇒ w =
β2g

4k
− W.

14. The differential equation describing the angle θ of opening of the door as a function of time t is

I
d2θ

dt2
+ β

dθ

dt
+ kθ = 0.

The auxiliary equation Im2 + βm + k = 0 has roots

m =
−β ±

√
β2 − 4kI

2I
.

Continual motion back and forth is curtailed when motion is critically damped or overdamped,
and this occurs when β2 − 4kI ≥ 0; that is β ≥ 2

√
kI .

15. Suppose βu, βc, and βo represent damping coefficients for underdamped, critically damped, and
overdamped motions. According to equations 5.19, 5.21, and 5.22, displacements for the mass are
given by

x(t) = e−βut/(2M)(C1 cosωt + C2 sinωt), (underdamped motion)
x(t) = (C1 + C2t)e−βct/(2M), (critically damped motion)

x(t) = C1e
(−βo+

√
β2

o−4kM )t/(2M) + C2e
(−β0−

√
β2
0−4kM)t/(2M) (overdamped motion).

The rate at which x(t) goes to zero is determined by the exponential factors

e−βut/(2M), e−βct/(2M), and e(−βo+
√

β2
o−4kM)t/(2M).

Since βu < βc, it follows that e−βct/(2M) < e−βut/(2M), and therefore the mass returns to its
equilibrium position more quickly in critically damped motion than in underdamped motion. We
now show that the mass also returns to its equilibrium position more quickly in critically damped
motion than in overdamped motion. This is true provided we can show that

βo −
√

β2
o − 4kM < βc.

But we know that βc = 2
√

kM , and therefore we must show that

βo −
√

β2
o − β2

c < βc

1 −

√
1 −

(
βc

βo

)2

<
βc

βo√
1 −

(
βc

βo

)2

> 1 − βc

βo

1 −
(

βc

βo

)2

> 1 − 2
(

βc

βo

)
+
(

βc

βo

)2

2
(

βc

βo

)2

− 2
(

βc

βo

)
< 0

2
(

βc

βo

)(
βc

βo
− 1
)

< 0.

But this is true since βc < βo. The rate of return to equilibrium for underdamped motion can be
faster or slower than that for overdamped motion. Certainly, we can say that if βo is very large, then
the rate at which the mass returns to its equilibrium position is very slow (since βo −

√
β2

o − 4kM
is close to zero). As βo decreases, the rate at which the mass returns to equilibrium increases until
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it reaches the rate for critical damping. When βu is very small, the rate at which the mass returns
to equilibrium is also small. As βu increases, the rate increases until it reaches the rate for critical
damping. The rates will be the same if

βu = βo −
√

β2
o − 4kM

βo − βu =
√

β2
o − β2

c

β2
o − 2βoβu + β2

u = β2
o − β2

c

β2
u − 2βoβu + β2

c = 0.

If damping coefficients βu and βo are such that the last quantity is negative, then the mass will
return to equilibrium more quickly for underdamped motion, whereas if this quantity is positive,
return is quicker for overdamped motion.

16. (a) The initial-value problem describing the position x(t) of the mass is

M
d2x

dt2
+ β

dx

dt
+ kx = 0, x(0) = x0, x′(0) = v0.

The auxiliary equation is Mm2 + βm + k = 0 with solutions m =
−β ±

√
β2 − 4kM

2M
. Since

the motion is underdamped, β2 − 4kM < 0, and the auxiliary has equal roots m = (−β ±√
4kM − β2i)/(2M). A general solution of the differential equation is

x(t) = e−βt/(2M)

[
C1 cos

(√
4kM − β2

2M
t

)
+ C2 sin

(√
4kM − β2

2M
t

)]
.

The initial conditions determine values for C1 and C2, but we shall not need them. Any function
of this form can also be expressed in the form

x(t) = Ae−βt/(2M) sin

(√
4kM − β2

2M
t + φ

)
.

(b) The times at which the mass passes through equilibrium are defined by the equation

0 = x(t) = Ae−βt/(2M) sin

(√
4kM − β2

2M
t + φ

)
=⇒ sin

(√
4kM − β2

2M
t + φ

)
= 0.

Hence,
√

4kM − β2

2M
t + φ = nπ =⇒ t =

2M(nπ − φ)√
4kM − β2

,

where n ≥ 1 is an integer. The time interval between successive passes throught the origin is
2Mπ√

4kM − β2
.

(c) Times at which the velocity of the mass is equal to zero are given by

0 = A

[
− β

2M
e−βt/(2M) sin

(√
4kM − β2

2M
t + φ

)
+

√
4kM − β2

2M
e−βt/(2M) cos

(√
4kM − β2

2M
t + φ

)]
.

This simplifies to

−β sin

(√
4kM − β2

2M
t + φ

)
+
√

4kM − β2 cos

(√
4kM − β2

2M
t + φ

)
= 0,

from which
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tan

(√
4kM − β2

2M
t + φ

)
=

√
4kM − β2

β
.

Thus, times at which the velocity is zero are

tn =
2M√

4kM − β2

[
Tan−1

(√
4kM − β2

β

)
+ nπ − φ

]
,

where n ≥ 1 is an integer. Depending on values for φ and the inverse tangent function, n might
start at a value other than 1. It makes no difference to the rest of our discussion. Suppose xn are
the corresponding values for x(t). Consider the ratio

xn

xn+2
=

e−βtn/(2M) sin
(√

4kM−β2

2M tn + φ

)

e−βtn+2/(2M) sin
(√

4kM−β2

2M tn+2 + φ

) = eβ(tn+2−tn)/(2M)

sin
(√

4kM−β2

2M tn + φ

)

sin
(√

4kM−β2

2M tn+2 + φ

) .

Since tn+2 − tn =
2M√

4kM − β2
(2π) =

4Mπ√
4kM − β2

, and therefore

eβ(tn+2−tn)/(2M) = e2βπ/
√

4kM−β2
.

Furthermore,

sin

(√
4kM − β2

2M
tn+2 + φ

)
= sin

[
Tan−1

(√
4kM − β2

β

)
+ (n + 2)π

]

= sin

[
Tan−1

(√
4kM − β2

β

)
+ nπ

]

= sin

(√
4kM − β2

2M
tn + φ

)
.

Thus,
xn

xn+2
= e2βπ/

√
4kM−β2

.

17. Suppose that s is the stretch in the spring when the support is motionless and the mass is at
equilibrium on the end of the spring. At this position ks − Mg = 0, where g = 9.81. When the
support is at position z and the mass has displacement x, the stretch in the spring is s − x + z.
Consequently, the differential equation for x(t) is

M
d2x

dt2
= k(s − x + z) − Mg − β

dx

dt
.

This simplifies to

M
d2x

dt2
+ β

dx

dt
+ kx = kf(t).

18. Suppose that s is the compression in the spring when the support is motionless and the mass is
at equilibrium on the end of the spring. At this position ks − Mg = 0, where g = 9.81. When
the support is at position z and the mass has displacement x, the compression in the spring is
s − x + z. Consequently, the differential equation for x(t) is

M
d2x

dt2
= k(s − x + z) − Mg − β

dx

dt
.

This simplifies to

M
d2x

dt2
+ β

dx

dt
+ kx = kf(t).
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19. Suppose that s is the compression in the spring on level road so that the car is at equilibrium on
the spring. At this position ks−Mg = 0, where g = 9.81. When the tire is at position Y and the
car has displacement y, the compression in the spring is s − y + Y . Consequently, the differential
equation for y(t) is

M
d2y

dt2
= k(s − y + Y ) − Mg − β

dy

dt
.

With ks − Mg = 0, this simplifies to

M
d2y

dt2
+ β

dy

dt
+ ky = kY = kf(x).

Since the speed of the car is v, the x-coordinate of the car is x = vt (taking t = 0 when the car
passes through the origin), and therefore

M
d2y

dt2
+ β

dy

dt
+ ky = kf(vt).

20. When damping proportional to velocity is taken into account, displacements s must satisfy

M
d2s

dt2
= −Mg sin θ − β

ds

dt
.

When we replace s with Lθ, and sin θ by θ for small displacements,

M
d2(Lθ)

dt2
= −Mgθ − β

d(Lθ)
dt

=⇒ M
d2θ

dt2
+ β

dθ

dt
+

Mg

L
θ = 0.
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EXERCISES 5.3

1. The solution is the same to the time and position of the first stop of the mass. During the return
trip to the right, the initial-value problem defining the position of the mass is

d2x

dt2
+ 16x = − g

10
, x(0.431082) = −0.191663, x′(0.431082) = 0.

A general solution of this differential equation is

x(t) = C3 cos 4t + C4 sin 4t − g

160
.

The initial conditions require

−0.191663 = C3 cos 4(0.431082) + C4 sin 4(0.431082)− g

160
,

0 = −4C3 sin 4(0.431082) + 4C4 cos 4(0.431082).

The solution is C3 = 0.0199344 and C4 = −0.128817, so that

x(t) = 0.0199344 cos4t − 0.128817 sin4t −
g

160
.

The mass comes to rest for the second time when

0 = x′(t) = −4(0.0199344) sin4t − 4(0.128817) cos4t =⇒ tan 4t = − 0.128817
0.0199344

.

Thus, t = −(1/4)Tan−1(0.128817/0.0199344)+ nπ/4 = −0.354316 + nπ/4. Since t must be larger
than 0.431082, we choose n = 2 in which case t = 1.216480. At this time, the position of the mass
is

x(1.216480) = 0.0199344 cos4(1.216480)− 0.128817 sin4(1.216480)− g

160
= 0.069038 m.

2. (a) We should first check that the initial stretch in the spring is sufficient to overcome the force
of static friction on the mass so that motion does occur. Since the coefficient of static friction is
twice that of kinetic friction, it follows that the minimum force that will cause motion is 1 N. At a
stretch of 6 cm, the spring force on the mass is 18(6/100) > 1. Thus, motion will occur. Since the
x-component of the force of friction when the mass is moving to the left is 1/2 N, the initial-value
problem describing the position x(t) of the mass from the time it starts until it comes to a stop
for the first time is

1
2

d2x

dt2
+ 18x =

1
2

=⇒ x′′ + 36x = 1, x(0) = 0.06, x′(0) = 0.

(b) The auxiliary equation is m2 +36 = 0 with solutions m = ±6i, and therefore x(t) = C1 cos 6t+
C2 sin 6t + 1/36. To satisfy the initial conditions, we must have 3/50 = C1 + 1/36 and 0 = 6C2.
Thus, x(t) = (29/900) cos6t + 1/36. Since v(t) = −(29/150) sin6t, the mass comes to rest for the
first time when 6t = π, and at this time, its position is x = (29/900) cosπ + 1/36 = −1/225. The
spring force at this position has magnitude 18(1/225) = 2/25 N. Since the force of static friction
is 1 N, further motion will not occur.

3. (a) We should first check that the initial stretch in the spring is sufficient to overcome the force
of static friction on the mass so that motion does occur. Since the coefficient of static friction is
twice that of kinetic friction, it follows that the minimum force that will cause motion is 1 N. At a
stretch of 25 cm, the spring force on the mass is 18(1/4) > 1. Thus, motion will occur. Since the
x-component of the force of friction when the mass is moving to the left is 1/2 N, the initial-value
problem describing the position x(t) of the mass from the time it starts until to a stop for the first
time is

1
2

d2x

dt2
+ 18x =

1
2

=⇒ x′′ + 36x = 1, x(0) = 0.25 x′(0) = 0.
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(b) The auxiliary equation is m2 +36 = 0 with solutions m = ±6i, and therefore x(t) = C1 cos 6t+
C2 sin 6t + 1/36. To satisfy the initial conditions, we must have 1/4 = C1 + 1/36 and 0 = 6C2.
Thus, x(t) = (2/9) cos 6t + 1/36. Since v(t) = (−4/3) sin 6t, the mass comes to rest for the first
time when 6t = π, and at this time, its position is x = (2/9) cosπ + 1/36 = −7/36 m. The spring
force at this position has magnitude 18(7/36) = 7/2 N. Since the force of static friction is 1 N,
further motion will occur.

4. The initial-value problem describing the position x(t) of the mass from the time it starts until it
comes to a stop for the first time is

1
5

d2x

dt2
+ 5x = −

1
4

(
1
5

)
g =⇒ x′′ + 25x = −

g

4
, x(0) = 0, x′(0) =

1
2
.

The auxiliary equation is m2 + 25 = 0 with solutions m = ±5i, and therefore x(t) = C1 cos 5t +
C2 sin 5t − g/100. To satisfy the initial conditions, we must have 0 = C1 − g/100 and 1/2 = 5C2.
Thus, x(t) = (g/100) cos5t + (1/10) sin 5t− g/100. The mass comes to rest for the first time when

0 = x′(t) = − g

20
sin 5t +

1
2

cos 5t =⇒ tan 5t =
10
g

.

Solutions are t = (1/5)Tan−1(10/g) + nπ/5 = 0.158998 + nπ/5, where n is an integer. The first
positive solution is t = 0.158998. The position of the mass at this time is

x =
g

100
cos 5(0.158998) +

1
10

sin 5(0.158998)− g

100
= 0.0419843 m.

The spring force at this position has magnitude 5(0.0419843) = 0.210 N. Since the maximum force
of static friction is (1/2)(1/5)g = 0.981, the mass will not move from this position.

5. The initial-value problem describing the position x(t) of the mass from the time it starts until it
comes to a stop for the first time is

1
5

d2x

dt2
+ 5x = −1

4

(
1
5

)
g =⇒ x′′ + 25x = −g

4
, x(0) = 0, x′(0) = 2.

The auxiliary equation is m2 + 25 = 0 with solutions m = ±5i, and therefore x(t) = C1 cos 5t +
C2 sin 5t − g/100. To satisfy the initial conditions, we must have 0 = C1 − g/100 and 2 = 5C2.
Thus, x(t) = (g/100) cos5t + (2/5) sin 5t − g/100. The mass comes to rest for the first time when

0 = x′(t) = − g

20
sin 5t + 2 cos5t =⇒ tan 5t =

40
g

.

Solutions are t = (1/5)Tan−1(40/g) + nπ/5 = 0.266059 + nπ/5, where n is an integer. The first
positive solution is t = 0.266059. The position of the mass at this time is

x =
g

100
cos 5(0.266059) +

2
5

sin 5(0.266059)− g

100
= 0.313754 m.

The spring force at this position has magnitude 5(0.313754) = 1.57 N. Since the maximum force
of static friction is (1/2)(1/5)g = 0.981, the mass will move from this position. The initial-value
problem describing the position x(t) of the mass until it comes to a stop for the second time is

1
5

d2x

dt2
+ 5x =

9
20

=⇒ x′′ + 25x =
g

4
, x(0) = 0.313754, x′(0) = 0,

where we have re-initiated time as t = 0 at the start of this motion. A general solution of the
differential equation is x(t) = C1 cos 5t + C2 sin 5t + g/100. To satisfy the initial conditions, we
must have 0.313754 = C1 + g/100 and 0 = 5C2. Thus, x(t) = 0.215654 cos5t + g/100. The mass
comes to rest for the second time when

0 = x′(t) = −5(0.215654) sin5t =⇒ t =
nπ

5
.
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The first positive solution is t = π/5. The position of the mass at this time is

x = 0.215654 cosπ +
g

100
= −0.117554 m.

The spring force at this position has magnitude 5(0.117554) = 0.588 N. Since this is less than the
maximum force of static friction, the mass will not move from this position.

6. The initial-value problem describing the position x(t) of the mass relative to its equilibrium position
is

1
10

d2x

dt2
+ 4000x = 3 cos100t =⇒ x′′ + 40 000x = 30 cos100t, x(0) = 0, x′(0) = 10.

The auxiliary equation is m2 + 40 000 = 0 with solutions m = ±200i. A general solution of the
associated homogeneous equation is xh(t) = C1 cos 200t + C2 sin 200t. Substituting a particular
solution of the form xp = A cos 100t + B sin 100t into the differential equation gives

(−10 000A cos100t− 10 000B sin 100t) + 40 000(A cos100t + 100B sin 100t) = 30 cos 100t.

This implies that A = 1/1000 and B = 0, so that x(t) = C1 cos 200t+C2 sin 200t+(1/1000) cos100t.
The initial conditions require 0 = C1 +1/1000 and 10 = 200C2. Thus, x(t) = −(1/1000) cos200t+
(1/20) sin 200t + (1/1000) cos100t m. Because displacements are bounded, resonance does not
occur.

7. The initial-value problem describing the position x(t) of the mass relative to its equilibrium position
is

1
10

d2x

dt2
+ 4000x = 3 cos200t =⇒ x′′ + 40 000x = 30 cos200t, x(0) = 0, x′(0) = 10.

The auxiliary equation is m2 + 40 000 = 0 with solutions m = ±200i. A general solution of the
associated homogeneous equation is xh(t) = C1 cos 200t + C2 sin 200t. Substituting a particular
solution of the form xp = At cos 200t + Bt sin 200t into the differential equation gives

(−400A sin 200t− 40 000At cos200t + 400B cos 200t− 40 000Bt sin200t)
+ 40 000(At cos200t + Bt sin 200t) = 30 cos 200t.

This implies that A = 0 and B = 3/40, so that x(t) = C1 cos 200t + C2 sin 200t + (3t/40) sin 200t.
The initial conditions require 0 = C1 and 10 = 200C2. Thus, x(t) = (1/20 + 3t/40) sin 200t m.
Because displacements are unbounded, resonance occurs.

8. The initial-value problem describing the position of the mass relative to its equilibrium position is

(1)
d2x

dt2
+ 64x = 2 sin 4t, x(0) = 0, x′(0) = 0.

The auxiliary equation is 0 = m2 +64 with solutions m = ±8i. A general solution of the associated
homogeneous differential equation is xh(t) = C1 cos 8t + C2 sin 8t. A particular solution is of the
form xp(t) = A sin 4t + B cos 4t. When we substitute this into the differential equation, we obtain

(−16A sin 4t − 16B cos 4t) + 64(A sin 4t + B cos 4t) = 2 sin 4t.

This implies that A = 1/24 and B = 0. A general solution of the differential equation is therefore
x(t) = C1 cos 8t + C2 sin 8t + (1/24) sin 4t. To satisfy the initial conditions, we must have 0 = C1

and 0 = 8C2 + 1/6. Thus, x(t) = −(1/48) sin 8t + (1/24) sin 4t m. For large t, oscillations are
bounded so resonance does not occur.

9. The initial-value problem describing the position of the mass relative to its equilibrium position is

(1)
d2x

dt2
+ 64x = 2 sin 8t, x(0) = 0, x′(0) = 0.
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The auxiliary equation is 0 = m2 +64 with solutions m = ±8i. A general solution of the associated
homogeneous differential equation is xh(t) = C1 cos 8t + C2 sin 8t. A particular solution is of the
form xp(t) = At sin 8t+Bt cos 8t. When we substitute this into the differential equation, we obtain

= (−64At sin 8t16A cos 8t − 64Bt cos 8t − 16B sin 8t) + 64(At sin 8t + Bt cos 8t) = 2 sin 8t.

When we equate coefficents of sin 8t and cos 8t, we get

−16B = 2, 16A = 0.

Thus, xp(t) = −(t/8) cos 8t, and x(t) = C1 cos 8t + C2 sin 8t − (t/8) cos 8t. To satisfy the initial
conditions, we must have 0 = C1 and 0 = 8C2 − 1/8. Hence, x(t) = (1/64) sin 8t − (t/8) cos 8t m.
For large t, oscillations are unbounded and resonance occurs.

10. (a) According to equation 5.4, the initial-value problem for motion of the mass is

M
d2x

dt2
+ kx = kA sinωt, x(0) = 0, x′(0) = 0.

The auxiliary equation is 0 = Mm2 + k with solutions m = ±
√

k/Mi. A general solution of
the associated homogeneous differential equation is xh(t) = C1 cos (

√
k/Mt) + C2 sin (

√
k/Mt). A

particular solution is of the form xp(t) = B sin ωt + D cosωt. When we substitute this into the
differential equation, we obtain

M(−ω2B sinωt − ω2D cosωt) + k(B sinωt + D cosωt) = kA sin ωt.

When we equate coefficents of sin ωt and cosωt, we get

−ω2MB + kB = kA, −ω2MD + kD = 0.

Thus, xp(t) =
(

kA

k − ω2M

)
sin ωt, and

x(t) = C1 cos

√
k

M
t + C2 sin

√
k

M
t +
(

kA

k − ω2M

)
sinωt.

To satisfy the initial conditions, we must have 0 = C1 and 0 =

√
k

M
C2 +

kωA

k − ω2M
. Hence,

x(t) =
ω
√

kMA

ω2M − k
sin

√
k

M
t +
(

kA

k − ω2M

)
sin ωt.

(b) When ω =
√

k/M , the particular solution must be taken in the form xp(t) = Bt sin

√
k

M
t+

Dt cos

√
k

M
t. Substitution into the differential equation gives

kA sin

√
k

M
t = M

(
2B

√
k

M
cos

√
k

M
t − kBt

M
sin

√
k

M
t − 2D

√
k

M
sin

√
k

M
t − kDt

M
cos

√
k

M
t

)

+ k

(
Bt sin

√
k

M
t + Dt cos

√
k

M
t

)
.

When we equate coefficents of sinωt and cosωt, we get −2D
√

kM = kA and 2B
√

kM = 0. Thus,

x(t) = C1 cos

√
k

M
t + C2 sin

√
k

M
t −

A
√

k/Mt

2
cos

√
k

M
t.

To satisfy the initial conditions, we must have 0 = C1 and 0 =

√
k

M
C2 −

A
√

k/M

2
. Hence,
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x(t) =
A

2
sin

√
k

M
t −

A
√

k/Mt

2
cos

√
k

M
t.

Oscillations are unbounded and resonance occurs.

11. The differential equation describing the position of the mass is M
d2x

dt2
+ kx = A cosωt. Solutions

of the auxiliary equation Mm2 + k = 0 are m = ±
√

k/Mi. Hence, a general solution of the
associated homogeneous equation is x(t) = C1 cos

√
k/Mt + C2 sin

√
k/Mt. Resonance occurs

when
√

k/M = ω.

12. The initial-value problem describing the position x(t) of the mass relative to its equilibrium position
is

1
5

d2x

dt2
+

3
2

dx

dt
+ 10x = 4 sin 10t =⇒ 2x′′ + 15x′ + 100x = 40 sin10t, x(0) = 0, x′(0) = 0.

The auxiliary equation is 2m2 + 15m + 100 = 0 with solutions m = (−15 ± 5
√

23i)/4. A general
solution of the associated homogeneous equation is

xh(t) = e−15t/4

(
C1 cos

5
√

23t
4

+ C2 sin
5
√

23t
4

)
.

A particular solution of the differential equation is of the form xp(t) = A sin 10t+B cos 10t. When
we substitute this into the differential equation, we obtain

2(−100A sin10t − 100B cos 10t) + 15(10A cos 10t− 10B sin 10t)
+ 100(A sin 10t + B cos 10t) = 40 sin 10t.

When we equate coefficients of sin 10t and cos 10t, we get

−200A− 150B + 100A = 40, −200B + 150A + 100B = 0.

The solution is A = −8/65 and B = −12/65. Hence, a general solution of the differential equation
is x(t) = e−15t/4[C1 cos (5

√
23t/4) + C2 sin (5

√
23t/4)]− (4/65)(3 cos10t + 2 sin 10t). To satisfy the

initial conditions, we must have 0 = C1 − 12/65 and 0 = −15C1/4 + 5
√

23C2/4 − 16/13. These
imply that C1 = 12/65 and C2 = 20/(13

√
23), and therefore

x(t) = e−15t/4

(
12
65

cos
5
√

23t
4

+
20

13
√

23
sin

5
√

23t
4

)
− 4

65
(3 cos 10t + 2 sin 10t) m.

13. (a) The initial-value problem describing the position x(t) of the mass relative to its equilibrium
position is

d2x

dt2
+ 2

dx

dt
+ 100x = 2 sin ωt, x(0) = 0, x′(0) = 0.

The auxiliary equation is m2 +2m+100 = 0 with solutions m = −1±3
√

11i. A general solution of
the associated homogeneous equation is xh(t) = e−t

(
C1 cos 3

√
11t + C2 sin 3

√
11t
)
. A particular

solution of the differential equation is of the form xp(t) = A sin ωt + B cosωt. When we substitute
this into the differential equation, we obtain

(−ω2A sinωt − ω2B cosωt) + 2(ωA cosωt − ωB sin ωt)
+ 100(A sinωt + B cosωt) = 2 sinωt.

When we equate coefficients of sinωt and cosωt, we get

−ω2A − 2ωB + 100A = 2, −ω2B + 2ωA + 100B = 0.
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The solution is A = 2(100− ω2)/[(100− ω2)2 + 4ω2] and B = −4ω/[(100− ω2)2 + 4ω2]. Hence, a
general solution of the differential equation is

x(t) = e−t
(
C1 cos 3

√
11t + C2 sin 3

√
11t
)

+
1

(100− ω2)2 + 4ω2
[2(100− ω2) sin ωt − 4ω cosωt].

To satisfy the initial conditions, we must have

0 = C1 −
4ω

(100− ω2)2 + 4ω2
, 0 = −C1 + 3

√
11C2 +

2ω(100− ω2)
(100− ω2)2 + 4ω2

.

These imply that

C1 =
4ω

(100− ω2)2 + 4ω2
, C2 =

2
3
√

11

[
ω(ω2 − 98)

(100− ω2)2 + 4ω2

]
.

The position of the mass is therefore

x(t) = e−t

{
4ω

(100 − ω2)2 + 4ω2
cos 3

√
11t +

2
√

11ω(ω2 − 98)
33[(100− ω2)2 + 4ω2]

sin 3
√

11t

}

+
1

(100− ω2)2 + 4ω2
[2(100− ω2) sin ωt − 4ω cosωt]

=
1

(100− ω2)2 + 4ω2

{
e−t

[
4ω cos 3

√
11t +

2
√

11ω(ω2 − 98)
33

sin 3
√

11t

]

+ [2(100− ω2) sin ωt − 4ω cosωt]
}

m.

(b) Resonance occurs when the amplitude of the steady-state part of the solution, namely,

xp(t) =
1

(100− ω2)2 + 4ω2
[2(100− ω2) sin ωt − 4ω cosωt],

is a maximum. The amplitude is

A =
1

(100− ω2)2 + 4ω2

√
4(100− ω2)2 + 16ω2 =

2√
(100− ω2)2 + 4ω2

.

This is a maximum when the derivative of (100− ω2)2 + 4ω2 vanishes,

0 = 2(100− ω2)(−2ω) + 8ω =⇒ ω = 7
√

2.

Maximum amplitude is

2√
(100 − 98)2 + 4(98)

=
√

11
33

m.

14. (a) Substituting a particular solution of the form xp(t) = B cosωt + C sin ωt into the differential
equation

M
d2x

dt2
+ β

dx

dt
+ kx = A cosωt,

gives

M(−ω2B cosωt − ω2C sin ωt) + β(−ωB sin ωt + ωC cosωt) + k(B cosωt + C sinωt) = A cosωt.

When we equate coefficients of cosωt and sin ωt, we obtain

(k − Mω2)B + βωC = A, −βωB + (k − Mω2)C = 0.
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The solution of these is B =
A(k − Mω2)

(k − Mω2)2 + β2ω2
, C =

Aβω

(k − Mω2)2 + β2ω2
. The particular so-

lution is therefore

xp(t) =
A

(k − Mω2)2 + β2ω2
[(k − Mω2) cosωt + βω sin ωt].

(b) The amplitude of the particular solution is

A

(k − Mω2)2 + β2ω2

√
(k − Mω2)2 + β2ω2 =

A√
(k − Mω2)2 + β2ω2

.

It is a maximum when (k−Mω2)2 +β2ω2 is smallest. To determine the value of ω that yields the
minimum, we solve

0 = 2(k − Mω2)(−2Mω) + 2β2ω = 2ω[−2M(k − Mω2) + β2].

The nonzero solution is ω =
√

k/M − β2/(2M2). The amplitude at this value of ω is

A√[
k − M

(
k

M
− β2

2M2

)]2
+ β2

(
k

M
− β2

2M2

) =
2AM

β
√

4kM − β2
.

15. (a) Suppose y measures the distance the mass moves after striking the platform. Then Newton’s
second law applied to the motion of the mass gives

20
d2y

dt2
= −1000y − 10

dy

dt
+ 20g.

When we divide by 10 and attach initial displacement and velocity, we obtain the initial-value
problem

2
d2y

dt2
+

dy

dt
+ 100y = 2g, y(0) = 0, y′(0) = 2.

The auxiliary equation 2m2 +m+100 = 0 has roots m = (−1±
√

799i)/4. Consequently, a general
solution of the differential equation is

y(t) = e−t/4

(
C1 cos

√
799t
4

+ C2 sin
√

799t
4

)
+

g

50
.

The initial conditions require

0 = y(0) = C1 +
g

50
, 2 = y′(0) = −C1

4
+

√
799C2

4
.

These imply that C1 = −g/50 and C2 = (400− g)/(50
√

799), and therefore

y(t) = e−t/4

[
− g

50
cos

√
799t
4

+
(

400− g

50
√

799

)
sin

√
799t
4

]
+

g

50
.

(b) The maximum displacement experienced by the mass occurs when the mass comes to an
instantaneous stop for the first time. We therefore set

0 =
dy

dt
= −1

4
e−t/4

[
− g

50
cos

√
799t
4

+
(

400− g

50
√

799

)
sin

√
799t
4

]

+ e−t/4

[√
799g
200

sin
√

799t
4

+
√

799
4

(
400− g

50
√

799

)
cos

√
799t
4

]
.

This equation implies that
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t =
4√
799

Tan−1




2
400− g

200
√

799
−

√
799g
200


 =

4√
799

(−0.9883 + nπ),

where n is an integer. The smallest positive solution occurs for n = 1, and for this value of n,
t = 0.3047 s. The displacement of the mass at this time is y(0.3047) = 0.51 m.

16. Suppose the mass of the chain is M so that its mass
per unit length is M/a. When the length of chain
hanging from the edge of the table is y, gravity
acts on this part of the chain, but it accelerates the
entire length of chain. Newton’s second law gives

M
d2y

dt2
=

Mgy

a
. y

y=0

This differential equation is subject to the initial
conditions y(0) = b and y′(0) = 0, provided t = 0 is taken at the instant motion begins. The
differential equation is linear with auxiliary equation m2 − g/a = 0 =⇒ m = ±

√
g/a. A general

solution is therefore y(t) = C1e
√

g/at + C2e
−
√

g/at. The initial conditions require

b = C1 + C2, 0 =
√

g

a
C1 −

√
g

a
C2 =⇒ C1 = C2 = b/2.

Thus, y(t) =
b

2
(e
√

g/at + e−
√

g/at). The chain slides off the table when y = a in which case

a =
b

2
(e
√

g/at + e−
√

g/at) =⇒ e2
√

g/at − 2a

b
e
√

g/at + 1 = 0.

This is a quadratic in e
√

g/at with solutions

e
√

g/at =
2a/b±

√
4a2/b2 − 4
2

=
1
b
(a ±

√
a2 − b2) =⇒ t =

√
a

g
ln

(
a ±

√
a2 − b2

b

)
.

It is straightforward to verify that (a −
√

a2 − b2)/b < 1 in which case t would be negative, an

unacceptable value. Hence, t =
√

a

g
ln

(
a +

√
a2 − b2

b

)
.

17. (a) Suppose the mass of the chain is M so that its mass
per unit length is M/a. When the length of chain
hanging from the edge of the table is b, the force
of gravity on this much chain must be larger than
the force of friction on that part of the chain still
on the table, y

y=0

(
bM

a

)
g > µs

[
(a − b)M

a

]
g.

Thus, the smallest amount of hanging chain is b = µs(a − b).
(b) When the length of chain hanging from the edge of the table is y, gravity acts on this part of
the chain, but it accelerates the entire length of chain. Newton’s second law gives

M
d2y

dt2
=

Mgy

a
− µkMg

a
(a − y) =⇒ d2y

dt2
− g

a
(1 + µk)y = −µkg.

This differential equation is subject to the initial conditions y(0) = b and y′(0) = 0, provided
t = 0 is taken at the instant motion begins. The differential equation is linear with auxiliary
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equation m2 − (g/a)(1 + µk) = 0 =⇒ m = ±
√

g(1 + µk)/a. A general solution is therefore

y(t) = C1e
√

g(1+µk)/at + C2e
−
√

g(1+µk)/at + aµk/(1 + µk). The initial conditions require

b = C1 + C2 +
aµk

1 + µk
, 0 =

√
g(1 + µk)

a
C1 −

√
g(1 + µk)

a
C2 =⇒ C1 = C2 =

1
2

(
b −

aµk

1 + µk

)
.

Thus, y(t) =
1
2

(
b − aµk

1 + µk

)
(e
√

g(1+µk)/at + e−
√

g(1+µk)/at) +
aµk

1 + µk
. The chain slides off the

table when y = a,

a =
1
2

(
b − aµk

1 + µk

)
(e
√

g(1+µk)/at + e−
√

g(1+µk)/at) +
aµk

1 + µk
,

which can be expressed in the form

e2
√

g(1+µk)/at − 2a

b(1 + µk) − aµk
e
√

g(1+µk)/at + 1 = 0.

This is a quadratic in e
√

g(1+µk)/at with solutions

e
√

g(1+µk)/at =
1
2

[
2a

b(1 + µk) − aµk
±

√
4a2

[b(1 + µk) − aµk]2
− 4

]
=

a ±
√

a2 − [b(1 + µk) − aµk]2

b(1 + µk) − aµk
,

and

t =
√

a

g(1 + µk)
ln

{
a ±

√
a2 − [b(1 + µk) − aµk]2

b(1 + µk) − aµk

}
.

It can be shown that the negative root leads to a value t < 0. Hence,

t =
√

a

g(1 + µk)
ln

{
a +

√
a2 − [b(1 + µk) − aµk]2

b(1 + µk) − aµk

}
.

18. Let us use the coordinate system of Figure 5.6 to measure the displacement of the mass. If s is the
stretch in the spring at equilibrium, then when the mass is at position x, the stretch is s−x+f(t).
Newton’s second law for the motion gives

1
2

d2x

dt2
= −10

dx

dt
− g

2
+ 250[s− x + f(t)].

At equilibrium, −g/2 + 250s = 0, so that

1
2

d2x

dt2
= −10

dx

dt
+ 250[−x + f(t)] =⇒ d2x

dt2
+ 20

dx

dt
+ 500x = 50 sin2t,

subject to x(0) = x′(0) = 0. The auxiliary equation is m2 + 20m + 500 = 0 with solutions
m = −10 ± 20i. A general solution of the associated homogeneous equation is therefore xh(t) =
e−10t(C1 cos 20t + C2 sin 20t). When we substitute a particular solution of the form xp(t) =
A sin 2t + B cos 2t into the differential equation, we obtain

(−4A sin 2t − 4B cos 2t) + 20(2A cos 2t − 2B sin 2t) + 500(A sin 2t + B cos 2t) = 50 sin 2t.

Equating coeffcients to zero gives

496A − 40B = 50, 40A + 496B = 0,

the solution of which is A = 1550/15, 476 and B = −125/15 476. A general solution of the
nonhomogeneous differential equation is

x(t) = e−10t(C1 cos 20t + C2 sin 20t) +
1550

15 476
sin 2t − 125

15 476
cos 2t.
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The initial conditions require

0 = x(0) = C1 −
125

15 476
, 0 = x′(0) = −10C1 + 20C2 +

1550
7738

.

These give C2 = −185/30 952. Thus, the position of the mass is given by

x(t) = e−10t

(
125

15 476
cos 20t−

185
30 952

sin 20t

)
+

1550
15 476

sin 2t −
125

15 476
cos 2t.

A plot of this function is shown to the right.
The damping is so severe that the transient
terms disappear almost immediately. The steady-
state terms of the particular solution persist
forever. The mass oscillates at the same frequency
as the motion of the upper support, but with a
slightly smaller amplitude, and out of phase with it.

x

t

0.1

-0.1

1 2 3 4

19. (a) Suppose that s > 0 represents the compression in the spring when the wheel is at equilibrium.
When y is the height of the wheel above its equilibrium position, the stretch (or compression) in
the spring is −s + y − A sinπx. Newton’s second law gives

500
d2y

dt2
= −1000(−s + y − A sin πx) − 500g.

At equilibrium, 1000s− 500g = 0, so that the differential equation reduces to

500
d2y

dt2
= −1000(y − A sin πx), or

d2y

dt2
+ 2y = 2A sinπx.

Since the truck is travelling at 18 km/hr or 5m/s, its x-coordinate t seconds after meeting the
speed bump is x = 5t. Thus,

d2y

dt2
+ 2y = 2A sin 5πt, subject to y(0) = 0, y′(0) = 0.

Since it takes the wheel 1/5 of a second to traverse the bump, the equation is in effect only for
0 < t < 1/5.
(b) The auxiliary equation m2 + 2 = 0 has roots m = ±

√
2i, and therefore yh(t) = C1 cos

√
2t +

C2 sin
√

2t. When we substitute yp(t) = B sin 5πt + D cos 5πt into the differential equation,

(−25π2B sin 5πt − 25π2D cos 5πt) + 2(B sin 5πt + D cos 5πt) = 2A sin 5πt.

Equating coefficients of sin 5πt and cos 5πt gives

−25π2B + 2B = 2A, −25π2D + 2D = 0, from which B =
2A

2 − 25π2
, D = 0.

Thus,

y(t) = C1 cos
√

2t + C2 sin
√

2t +
2A

2 − 25π2
sin 5πt.

The initial conditions require

0 = y(0) = C1, 0 = y′(0) =
√

2C2 +
10πA

2− 25π2
.

Displacement of the wheel is therefore

y(t) = − 5
√

2πA

2 − 25π2
sin

√
2t +

2A

2 − 25π2
sin 5πt =

A

2 − 25π2
(2 sin 5πt − 5

√
2π sin

√
2t) m.
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20. The initial-value problem describing the position x(t) of the mass from the time it starts until it
comes to a stop for the first time is

M
d2x

dt2
+ kx = −µMg, x(0) = x0, x′(0) = v0.

The auxiliary equation is Mm2 + k = 0 with solutions m = ±
√

k/Mi, and therefore x(t) =
C1 cos

√
k/Mt + C2 sin

√
k/Mt − µMg/k. To satisfy the initial conditions, we must have x0 =

C1 − µMg/k and v0 =
√

k/MC2. Thus,

x(t) =
(

x0 +
µMg

k

)
cos

√
k

M
t +

√
M

k
v0 sin

√
k

M
t − µMg

k
.

The mass comes to a stop for the first time when

0 = x′(t) = −
√

k

M

(
x0 +

µMg

k

)
sin

√
k

M
t + v0 cos

√
k

M
t.

We can rewrite this equation in the form

tan

√
k

M
t =

v0√
k/M(x0 + µMg/k)

=⇒ t =

√
M

k

[
Tan−1

(
v0

√
M/k

x0 + µMg/k

)
+ nπ

]
,

where n is an integer. For the smallest positive solution we choose n = 0.

21. The initial-value problem describing the position x(t) of the mass from the time it starts until it
comes to a stop for the first time is

M
d2x

dt2
+ kx = µMg, x(0) = x0, x′(0) = v0,

where v0 < 0. The auxiliary equation is Mm2 +k = 0 with solutions m = ±
√

k/Mi, and therefore
x(t) = C1 cos

√
k/Mt + C2 sin

√
k/Mt + µMg/k. To satisfy the initial conditions, we must have

x0 = C1 + µMg/k and v0 =
√

k/MC2. Thus,

x(t) =
(

x0 −
µMg

k

)
cos

√
k

M
t +

√
M

k
v0 sin

√
k

M
t +

µMg

k
.

The mass comes to a stop for the first time when

0 = x′(t) = −
√

k

M

(
x0 −

µMg

k

)
sin

√
k

M
t + v0 cos

√
k

M
t.

Except when x0 = µMg/k, we can rewrite this equation in the form

tan

√
k

M
t =

v0√
k/M(x0 − µMg/k)

=⇒ t =

√
M

k

[
Tan−1

(
v0

√
M/k

x0 − µMg/k

)
+ nπ

]
,

where n is an integer. For the smallest positive solution, we obtain

t =





√
M

k
Tan−1

(
v0

√
M/k

x0 − µMg/k

)
, when x0 < µMg/k

√
M

k

π

2
, when x0 = µMg/k

√
M

k

[
Tan−1

(
v0

√
M/k

x0 − µMg/k

)
+ π

]
, when x0 > µMg/k.

22. According to equation 5.4, the differential equation for displacement x(t) is
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M
d2x

dt2
+ kx = kA sinωt.

The auxiliary equation is Mm2 + k = 0 with solutions m = ±
√

k/Mi, so that

xh(t) = C1 cos

√
k

M
t + C2 sin

√
k

M
t.

Resonance occurs when ω =
√

k/M . In the nonresonant case, xp(t) = D sin ωt + E cosωt. Substi-
tution into the differential equation gives

M(−ω2D sinωt − ω2E cosωt) + k(D sinωt + E cosωt) = kA sin ωt.

When we equate coefficients of sinωt and cosωt,

−Mω2D + kD = kA, −Mω2E + kE = 0 =⇒ D =
kA

k − Mω2
, E = 0.

Thus, x(t) = C1 cos

√
k

M
t + C2 sin

√
k

M
t +

kA

k − Mω2
sin ωt. The initial conditions require

x0 = x(0) = C1, v0 = x′(0) = C2

√
k

M
+

kAω

k − Mω2
.

Displacement of the mass is therefore

x(t) = x0 cos

√
k

M
t +

√
M

k

(
v0 −

kAω

k − Mω2

)
sin

√
k

M
t +

kA

k − Mω2
sin ωt.

Resonance occurs when ω =
√

k/M .

23. If y > 0 is the depth of the bottom surface of the cube, then Newton’s second law from time t = 0
when the cube is released until it is completely submerged gives

1200
d2y

dt2
= 1200g − 2

dy

dt
− y(1)2(1000)g =⇒ 600

d2y

dt2
+

dy

dt
+ 500gy = 600g,

subject to y(0) = 0 and y′(0) = 0. The auxiliary equation is

600m2 + m + 500g = 0 with solution m =
−1±

√
1 − 1 200 000g

1200
.

If we set ω =
√

1 200 000g− 1/1200, then a general solution of the differential equation is

y(t) = e−t/1200(C1 cosωt + C2 sin ωt) +
6
5
.

The initial conditions require

0 = y(0) = C1 +
6
5
, 0 = y′(0) = − C1

1200
+ ωC2.

These give C1 = −6/5 and C2 = −1/(1000ω), and therefore

y(t) =
6
5
− e−t/1200

1000ω
(1200ω cosωt + sin ωt).

This is valid as long as y ≤ 1. When y = 1,

1 =
6
5
− e−t/1200

1000ω
(1200ω cosωt + sinωt),
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the numerical solution of which is t = 0.49 s.
A plot of y(t) for 0 ≤ t ≤ 0.49 is shown
to the right.

t

y
1

0.5

0.2 0.4

24. If y > 0 is the depth of the bottom surface of the cube, then Newton’s second law from time t = 0
when the cube is released gives

500
d2y

dt2
= 500g − 2

dy

dt
− y(1)2(1000)g =⇒ 250

d2y

dt2
+

dy

dt
+ 500gy = 250g,

subject to y(0) = 0 and y′(0) = 0. The auxiliary equation is

250m2 + m + 500g = 0 with solution m =
−1 ±

√
1 − 500 000g

500
.

If we set ω =
√

500 000g − 1/500, then a general solution of the differential equation is

y(t) = e−t/500(C1 cosωt + C2 sinωt) +
1
2
.

The initial conditions require

0 = y(0) = C1 +
1
2
, 0 = y′(0) = − C1

500
+ ωC2.

These give C1 = −1/2 and C2 = −1/(1000ω), and therefore

y(t) =
1
2
− e−t/500

1000ω
(500ω cosωt + sinωt).

A plot of this function is shown
to the right.

t

y1

1/2

1 2 3 4 5

25. (a) If x is the length of the longer piece of cable, then Newton’s second law for acceleration of the
cable is

25ρ
d2x

dt2
= 9.81ρz,

where ρ is the mass per unit length
of the cable, and z is as shown in the
figure to the right. Since x + (x − z) = 25,
it follows that z = 2x − 25 and

25
d2x

dt2
= 9.81(2x− 25),

or,

25
d2x

dt2
− 19.62x = −245.25.

x

z

x=0

The auxiliary equation 25m2 − 19.62 = 0 has roots ±
√

19.62/25. If we denote the positive root
by m, then x(t) = C1e

mt + C2e
−mt + 245.25/19.62. The initial conditions x(0) = 15 and x′(0) = 0

require 15 = C1 + C2 + 245.25/19.62 and 0 = mC1 − mC2. These imply that C1 = C2 = 1.25.
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The cable slides off the peg when 25 = 1.25(emt + e−mt) + 245.25/19.62 and the solution of this
equation is 2.59 s.
(b) In this case Newton’s second gives

25ρ
d2x

dt2
= 9.81ρz − 9.81ρ =⇒ 25

d2x

dt2
− 19.62x = −255.06.

The solution of this differential equation is x(t) = C1e
mt + C2e

−mt + 255.06/19.62, where m is as
in part (a). The initial conditions require 15 = C1 + C2 + 255.06/19.62 and 0 = mC1 − mC2, and
these gives C1 = C2 = 1. The cable slides off the peg when 25 = emt + e−mt + 255.06/19.62 and
the solution of this equation is 2.80 s.
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EXERCISES 5.4

1. The initial-value problem describing charge Q(t) on the capacitor is

2
d2Q

dt2
+

1
0.001

Q = 20 =⇒ Q′′ + 500Q = 10, Q(0) = 0, Q′(0) = 0.

The auxiliary equation is 0 = m2 + 500 with solutions m = ±10
√

5i. A general solution of the
differential equation is therefore Q(t) = C1 cos 10

√
5t + C2 sin 10

√
5t + 1/50. To satisfy the initial

conditions, we must have 0 = C1 +1/50 and 0 = 10
√

5C2. Thus, Q(t) = −(1/50) cos10
√

5t +1/50
C, and the current in the circuit is I(t) = (1/

√
5) sin 10

√
5t A.

2. The initial-value problem describing charge Q(t) on the capacitor is

(1)
d2Q

dt2
+ 100

dQ

dt
+

1
0.02

Q = 0 =⇒ Q′′ + 100Q′ + 50Q = 0, Q(0) = 5 Q′(0) = 0.

The auxiliary equation is m2 +100m+50 = 0 with solutions m = −50± 35
√

2. A general solution
of the differential equation is therefore Q(t) = C1e

(−50+35
√

2)t + C2e
−(50+35

√
2)t. To satisfy the

initial conditions, we must have 5 = C1 + C2 and 0 = (−50 + 35
√

2)C1 − (50 + 35
√

2)C2. These
imply that C1 = 5(5

√
2 + 7)/14 and C2 = 5(7 − 5

√
2)/14, and therefore

Q(t) =
5
14

(5
√

2 + 7)e(−50+35
√

2)t +
5
14

(7 − 5
√

2)e−(50+35
√

2)t C.

3. The initial-value problem describing the current I(t) in the circuit is

5
d2I

dt2
+ 20

dI

dt
= 20 cos 2t, I(0) = 0, I ′(0) = 0.

The auxiliary equation is 5m2 + 20m = 0 with solutions m = 0, −4. A general solution of the
associated homogeneous differential equation is therefore I(t) = C1 + C2e

−4t. Substituting a
particular solution of the form Ip(t) = A cos 2t + B sin 2t into the differential equation gives

5(−4A cos 2t − 4B sin 2t) + 20(−2A sin 2t + 2B cos 2t) = 20 cos 2t.

This implies that −20A + 40B = 20 and −20B − 40A = 0, from which A = −1/5 and B = 2/5.
The current is therefore I(t) = C1 + C2e

−4t + (2 sin 2t − cos 2t)/5. The initial conditions require
0 = C1 + C2 − 1/5 and 0 = −4C2 + 4/5, from which C1 = 0 and C2 = 1/5. The transient part of
the current is (1/5)e−4t A, and the steady-state part is (2 sin 2t − cos 2t)/5 A.

4. The initial-value problem describing charge Q(t) on the capacitor is

1
2

d2Q

dt2
+ 3

dQ

dt
+

1
0.1

Q = 0 =⇒ Q′′ + 6Q + 20Q = 0, Q(0) = 0, Q′(0) = 1.

The auxiliary equation m2 + 6m + 20 = 0 has solutions m = −3 ±
√

11i. A general solution of
the differential equation is therefore Q(t) = e−3t(C1 cos

√
11t + C2 sin

√
11t). To satisfy the initial

conditions, we must have 0 = C1 and 1 = −3C1 +
√

11C2. Thus, Q(t) = (1/
√

11)e−3t sin
√

11t. To
find the maximum charge on the capacitor, we find critical points for Q(t),

0 = Q′(t) =
1√
11

(−3e−3t sin
√

11t +
√

11e−3t cos
√

11t).

The smallest positive solution of this equation is t = (1/
√

11)Tan−1(
√

11/3), and the charge on the
capacitor at this time is 0.105 C.

5. The initial-value problem describing the current in the circuit is

25
9

d2I

dt2
+

1
0.04

I = −45 sin 3t =⇒ 5I ′′ + 45I = −81 sin 3t, I(0) = I ′(0) = 0.
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The auxiliary equation 5m2 + 45 = 0 has solutions m = ±3i, and therefore Ih(t) = C1 cos 3t +
C2 sin 3t. A particular solution is of the form xp(t) = At sin 3t + Bt cos 3t. When we substitute
this into the differential equation, we get

5(6A cos 3t − 9At sin 3t − 6B sin 3t − 9Bt cos 3t) + 45(At sin 3t + Bt cos 3t) = −81 sin 3t.

This implies that A = 0 and B = 27/10. Thus, I(t) = C1 cos 3t + C2 sin 3t + (27t/10) cos3t. To
satisfy the initial conditions, we must have 0 = C1 and 0 = 3C2 +27/10, and the solution becomes
I(t) = −(9/10) sin 3t + (27/10)t cos3t A. Since the current becomes unbounded, resonance does
occur.
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EXERCISES 5.5

1. The boundary-value problem for deflections of the beam is

d4y

dx4
=

1
EI

(
−9.81m

L

)
, y(0) = y′′(0) = 0, y(L) = y′′(L) = 0.

Four antidifferentiations of this equation give

y(x) = C1 + C2x + C3x
2 + C4x

3 − 9.81mx4

24EIL
.

The boundary conditions require

0 = C1, 0 = 2C3, 0 = C1 + C2L + C3L
2 + C4L

3 − 9.81mL3

24EI
, 0 = 2C3 + 6C4L− 9.81mL

2EI
.

These imply that C2 = −9.81mL2

24EI
and C4 =

9.81m

12EI
, and deflections of the beam are

y(x) = −9.81mL2x

24EI
+

9.81mx3

12EI
− 9.81mx4

24EIL
= − 9.81m

24EIL
(x4 − 2Lx3 + L3x).

2. The boundary-value problem for deflections of the beam is

d4y

dx4
=

1
EI

(
−9.81m

L

)
, y(0) = y′(0) = 0, y(L) = y′(L) = 0.

Four antidifferentiations of this equation give

y(x) = C1 + C2x + C3x
2 + C4x

3 − 9.81mx4

24EIL
.

The boundary conditions require

0 = C1, 0 = C2, 0 = C1 + C2L + C3L
2 + C4L

3 − 9.81mL3

24EI
, 0 = C2 + 2C3L + 3C4L

2 − 9.81mL2

6EI
.

These imply that C3 = −9.81mL

24EI
and C4 =

9.81m

12EI
, and deflections of the beam are

y(x) = −9.81mLx2

24EI
+

9.81mx3

12EI
− 9.81mx4

24EIL
= − 9.81m

24EIL
(x4 − 2Lx3 + L2x2).

3. The boundary-value problem for deflections of the beam is

d4y

dx4
=

1
EI

(
−9.81m

L

)
, y(0) = y′(0) = 0, y(L) = y′′(L) = 0.

Four antidifferentiations of this equation give

y(x) = C1 + C2x + C3x
2 + C4x

3 −
9.81mx4

24EIL
.

The boundary conditions require

0 = C1, 0 = C2, 0 = C1 + C2L + C3L
2 + C4L

3 − 9.81mL3

24EI
, 0 = 2C3 + 6C4L − 9.81mL

2EI
.

These imply that C3 = −9.81mL

16EI
and C4 =

5(9.81)m
48EI

, and deflections of the beam are

y(x) = −
9.81mLx2

16EI
+

5(9.81)mx3

48EI
−

9.81mx4

24EIL
= −

9.81m

48EIL
(3L2x2 − 5Lx3 + 2x4).
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4. The boundary-value problem for deflections of the beam is

d4y

dx4
=

1
EI

{
−9.81m

L
− 19.62M

L
[h(x) − h(x − L/2)]

}
, y(0) = y′(0) = 0, y(L) = y′′(L) = 0.

Since h(x) = 1 for 0 < x < L, four integrations of this equation give

y(x) = C1 + C2x + C3x
2 + C4x

3 −
9.81mx4

24EIL
−

9.81M

12EIL
[x4 − (x − L/2)4h(x − L/2)].

The boundary conditions require

0 = C1, 0 = C2, 0 = C1 + C2L + C3L
2 + C4L

3 − 9.81mL3

24EI
− 9.81M

12EIL
[L4 − (L/2)4],

0 = 2C3 + 6C4L −
9.81mL

2EI
−

9.81M

EIL
[L2 − (L/2)2].

These imply that

C3 = −
9.81mL

16EI
−

9(9.81)ML

128EI
, C4 =

5(9.81)m
48EI

+
19(9.81)M

128EI
.

Deflections of the beam are

y(x) =
[
−9.81mL

16EI
− 9(9.81)ML

128EI

]
x2 +

[
5(9.81)m

48EI
+

19(9.81)M
128EI

]
x3

− 9.81mx4

24EIL
− 9.81M

12EIL

[
x4 − (x − L/2)4h(x − L/2)

]

=
9.81

384EIL

{
−(24m + 27M)L2x2 + (40m + 57M)Lx3

− 16mx4 − 32M
[
x4 − (x − L/2)4h(x − L/2)

]}
.•

5. The boundary-value problem for deflections of the beam is

d4y

dx4
=

1
EI

{
−9.81m

L
− 19.62M

L
[h(x − L/4)− h(x − 3L/4)]

}
, y(0) = y′(0) = 0, y(L) = y′′(L) = 0.

Four integrations of this equation give

y(x) = C1 + C2x + C3x
2 + C4x

3 − 9.81mx4

24EIL
− 9.81M

12EIL
[(x − L/4)4h(x − L/4)− (x − 3L/4)4h(x − 3L/4)].

The boundary conditions require

0 = C1, 0 = C2, 0 = C1 + C2L + C3L
2 + C4L

3 − 9.81mL3

24EI
− 9.81M

12EIL
[(3L/4)4 − (L/4)4],

0 = 2C3 + 6C4L − 9.81mL

2EI
− 9.81M

EIL
[(3L/4)2 − (L/4)2].

These imply that

C3 = −9.81mL

16EI
− 11(9.81)ML

128EI
, C4 =

5(9.81)m
48EI

+
43(9.81)M

384EI
.

Deflections of the beam are

y(x) =
[
−9.81mL

16EI
− 11(9.81)ML

128EI

]
x2 +

[
5(9.81)m

48EI
+

43(9.81)M
384EI

]
x3

− 9.81mx4

24EIL
− 9.81M

12EIL
[(x − L/4)4h(x − L/4) − (x − 3L/4)4h(x − 3L/4)]

=
9.81

384EIL

{
−(24m + 33M)L2x2 + (40m + 43M)Lx3

− 16mx4 − 32M [(x − L/4)4h(x − L/4)− (x − 3L/4)4h(x − 3L/4)]
}
.
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6. The boundary-value problem for deflections of the beam is

d4y

dx4
=

1
EI

[
−9.81m

L
−

19.62M

L
h(x − L/2)

]
, y(0) = y′(0) = 0, y′′(L) = y′′′(L) = 0.

Four integrations of this equation give

y(x) = C1 + C2x + C3x
2 + C4x

3 − 9.81mx4

24EIL
− 9.81M

12EIL
(x − L/2)4h(x − L/2).

The boundary conditions require

0 = C1, 0 = C2, 0 = 2C3 + 6C4L − 9.81mL

2EI
− 9.81M

EIL
(L/2)2,

0 = 6C4 −
9.81m

EI
− 19.62M

EIL
(L/2).

These imply that

C3 = −9.81mL

4EI
− 3(9.81)ML

8EI
, C4 =

9.81m

6EI
+

9.81M

6EI
.

Deflections of the beam are

y(x) =
[
−9.81mL

4EI
− 3(9.81)ML

8EI

]
x2 +

[
9.81m

6EI
+

9.81M

6EI

]
x3

− 9.81mx4

24EIL
− 9.81M

12EIL
(x − L/2)4h(x − L/2)

=
9.81

24EIL

[
−3(2m + 3M)L2x2 + 4(m + M)Lx3 − mx4 − 2M(x − L/2)4h(x − L/2)

]
.

The deflection of the right end of the board is

y(L) =
9.81

24EIL

[
−3(2m + 3M)L4 + 4(m + M)L4 − mL4 − 2M(L− L/2)4

]

= −
9.81L3(24m + 41M)

192EI
.

7. The boundary-value problem for deflections of the beam is

d4y

dx4
=

1
EI

{
−9.81m

L
− 19.62M

L
[h(x) − h(x − L/2)]

}
, y(0) = y′(0) = 0, y′′(L) = y′′′(L) = 0.

Since h(x) = 1 for 0 < x < L, four integrations of this equation give

y(x) = C1 + C2x + C3x
2 + C4x

3 − 9.81mx4

24EIL
− 9.81M

12EIL
[x4 − (x − L/2)4h(x − L/2)].

The boundary conditions require

0 = C1, 0 = C2, 0 = 2C3 + 6C4L − 9.81mL

2EI
− 9.81M

EIL
[L2 − (L/2)2],

0 = 6C4 −
9.81m

EI
− 19.62M

EIL
[L − (L/2)].

These imply that

C3 = −9.81mL

4EI
− 9.81ML

8EI
, C4 =

9.81m

6EI
+

9.81M

6EI
.

Deflections of the beam are
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y(x) = −
(

9.81mL

4EI
+

9.81ML

8EI

)
x2 +

(
9.81m

6EI
+

9.81M

6EI

)
x3

− 9.81mx4

24EIL
− 9.81M

12EIL
[x4 − (x − L/2)4h(x − L/2)]

=
9.81

24EIL

{
−3(2m + M)L2x2 + 4(m + M)Lx3 − mx4 − 2M [x4 − (x − L/2)4h(x − L/2)]

}
.

The deflection of the right end of the board is

y(L) =
9.81

24EIL

{
−3(2m + M)L4 + 4(m + M)L4 − mL4 − 2M [L4 − (L/2)4]

}

= −
9.81L3(24m + 7M)

192EI
.

This is less than the deflection in Exercise 6.
8. The boundary-value problem for deflections of the beam is

d4y

dx4
=

1
EI

{
−9.81m

L
−

19.62M

L
[h(x − L/4)− h(x − 3L/4)]

}
, y(0) = y′(0) = 0, y′′(L) = y′′′(L) = 0.

Four integrations of this equation give

y(x) = C1 + C2x + C3x
2 + C4x

3 − 9.81mx4

24EIL
− 9.81M

12EIL
[(x − L/4)4h(x − L/4)− (x − 3L/4)4h(x − 3L/4)].

The boundary conditions require

0 = C1, 0 = C2, 0 = 2C3 + 6C4L − 9.81mL

2EI
− 9.81M

EIL
[(3L/4)2 − (L/4)2],

0 = 6C4 −
9.81m

EI
− 19.62M

EIL
[(3L/4)− (L/4)].

These imply that

C3 = −9.81mL

4EI
− 9.81ML

4EI
, C4 =

9.81m

6EI
+

9.81M

6EI
.

Deflections of the beam are

y(x) =
(
−9.81mL

4EI
− 9.81ML

4EI

)
x2 +

(
9.81m

6EI
+

9.81M

6EI

)
x3

−
9.81mx4

24EIL
−

9.81M

12EIL
[(x − L/4)4h(x − L/4)− (x − 3L/4)4h(x − 3L/4)]

=
9.81

24EIL

{
−6(m + M)L2x2 + 4(m + M)Lx3 − mx4

− 2M [(x − L/4)4h(x − L/4) − (x − 3L/4)4h(x − 3L/4)]
}
.

The deflection of the right end of the board is

y(L) =
9.81

24EIL

{
−6(m + M)L4 + 4(m + M)L4 − mL4 − 2M [(L− L/4)4 − (L − 3L/4)4]

}

= −
9.81L3(24m + 21M)

192EI
.

This is less than the deflection in Exercise 6, but more than that in Exercise 7.


