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CHAPTER 4 APPLICATIONS OF LINEAR ALGEBRA

In this chapter we explore various mathematical problems, solutions of which can be sim-
plified with what we have learned about linear algebra.

§4.1 Linear, First-order Differential Equations

In Section 4.2, we discuss systems of coupled, linear, first-order differential equations. By
coupled we mean that if we have two differential equations in two unknowns, say x(t) and
y(t), then both equations contain both unknowns. We shall use linear algebra to decouple
the equations so that each equation contains only one of the unknowns. It will then be a
matter of solving two linear, first-order differential equations each with one unknown. A
linear, first-order differential equation in y(t) is one that can be expressed in the form

dy

dt
+ P (t)y = Q(t). (4.1)

Such equations are solved by introducing an integrating factor

e
∫

P (t) dt. (4.2)

When each term in the differential equation is multiplied by this factor, the result is

e
∫

P (t) dt dy

dt
+ P (t)ye

∫
P (t) dt = Q(t)e

∫
P (t) dt.

But the left side of the differential equation is now the derivative of a product,

d

dt

[
ye
∫

P (t) dt
]

= Q(t)e
∫

P (t) dt.

We can integrate both sides of the equation to get

ye
∫

P (t) dt =
∫

Q(t)e
∫

P (t) dtdt + C,

where C is a constant of integration. Division by the integrating factor gives a general
solution of the differential equation

y(t) = e−
∫

P (t) dt

[∫
Q(t)e

∫
P (t) dtdt

]
+ Ce−

∫
P (t) dt. (4.3)

In saying that expression 4.3 is a general solution of the differential equation, we mean that
it contains all solutions of the equation. Here are some examples to illustrate.

Example 4.1 Find a general solution of the differential equation
dy

dt
+ ty = t.

Solution An integrating factor for this linear equation is

e
∫

t dt = et2/2.

If we multiply each term in the equation by this factor, we have

et2/2 dy

dt
+ ytet2/2 = tet2/2,

and we know that the left side must be the derivative of the product of y and et2/2,

d

dt

(
yet2/2

)
= tet2/2.

(It is always a good idea to do the differentiation on the left to verify that the integrating
factor is indeed correct.) Integration yields
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yet2/2 =
∫

tet2/2dt = et2/2 + C =⇒ y(t) = 1 + Ce−t2/2.

This solution is valid for all values of t.•

Example 4.2 Find a general solution for the differential equation t
dy

dt
+ y − t sin t = 0.

Solution If we write the differential equation in the form

dy

dt
+

y

t
= sin t,

we see that it is linear first-order. An integrating factor is therefore

e
∫

(1/t) dt = eln |t| = |t|.

If we multiply each term in the differential equation by this factor, we get

|t|dy

dt
+

|t|
t

y = |t| sin t.

When t > 0, the absolute values may be discarded

t
dy

dt
+

t

t
y = t sin t,

whereas when t < 0, they are replaced by negative signs,

−t
dy

dt
− t

t
y = −t sin t.

In either case, however, the equation simplifies to

t
dy

dt
+ y = t sin t.

Notice that this is exactly the form in which we found the differential equation. In other
words, had we paused for a moment at the outset, we might have realized that the combina-
tion of terms t dy/dt + y in the original differential equation is the derivative of the product
ty. Having failed to do this, the above analysis confirms that this is indeed the case and the
differential equation can be expressed in the form

d

dt
(ty) = t sin t.

Integration now gives

ty =
∫

t sin t dt = −t cos t + sin t + C.

The explicit solution is

y(t) = − cos t +
sin t

t
+

C

t
.

Nonexistence of the solution at t = 0 suggests the more detailed description

y(t) =





− cos t +
sin t

t
+

C1

t
, t < 0

− cos t +
sin t

t
+

C2

t
, t > 0.•

EXERCISES 4.1
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In Exercises 1–12 find a general solution for the differential equation.

1.
dy

dt
+ 2ty = 4t 2.

dy

dt
+

2
t
y = 6t3

3. (2y − t) +
dy

dt
= 0 4.

dy

dt
+ y cot t = 5ecos t

5. (t2 + 1)
dy

dt
= −(t2 + 2ty) 6. (t + 1)

dy

dt
− 2y = 2(t + 1)

7.
1
t

dy

dt
−

y

t2
=

1
t3

8.
dy

dt
= y + e2t

9.
dy

dt
+ y = 2 cos t 10. t3

dy

dt
+ (2 − 3t2)y = t3

11.
dy

dt
+

y

t ln t
= t2 12. 2y cot 2t + 1 − 2t cot 2t − 2 csc 2t =

dy

dt

In Exercises 13–15 solve the initial-value problem.

13.
dy

dt
+ 3t2y = t2, y(1) = 2 14. (et sin t − y) =

dy

dt
, y(0) = −1

15.
dy

dt
+

t3y

t4 + 1
= t7, y(0) = 1

16. When a substance such as glucose is administered intravenously into the bloodstream at a constant rate
R, and the body uses the substance, the amount A(t) in the blood satisfies the initial-value problem

dA

dt
= R − kA, A(0) = A0,

where k > 0 is a constant, and A0 is the amount in the blood at time t = 0. Find A(t).

17. Repeat Exercise 16 if R is a function of time.

18. A tank contains 1000 litres of water in which 5 kilograms of salt has been dissolved. A brine mixture
containing 2 kilograms of salt for each 100 litres of solution is poured into the tank at 10 millilitres per
second. At the same time, mixture is being drawn from the bottom of the tank at 5 millilitres per second.
Assuming that the mitture in the tank is always well-stirred, the initial-value problem for the number of
grams S(t) of salt in the tank is

dS

dt
+

5S

106 + 5t
=

1
5
, S(0) = 5000.

Find S(t).

19. When a mass m falls under gravity, and it experiences a retarding force due to air resistance that is
proportional to velocity, its velocity must satisfy the initial-value problem

m
dv

dt
= mg − kv, v(0) = v0,

where g = 9.81, k > 0 is a constant, and v0 is its velocity at time t = 0 when fall commences. Find v(t).

Answers

1. y = 2 + Ce−t2 2. y = t4 + C/t2 3. y = t/2− 1/4 + Ce−2t 4. y = csc t(C − 5ecos t)
5. y = (3C − t3)/(3t2 + 3) 6. y = −2(t + 1) + C(t + 1)2 7. y = Ct − 1/(2t) 8. y = e2t + Cet

9. y = cos t + sin t + Ce−t 10. y = t3/2 + Ct3e1/t2 11. y = t3/3 + (9C − t3)/(9 ln t)
12. y = t + cos 2t + C sin 2t 13. y = (1 + 5e1−t2)/3 14. y = et(2 sin t − cos t)/5 − (4/5)e−t

15. y = (t4 + 1)2/9 − (t4 + 1)/5 + (49/45)(t4 + 1)−1/4 16. A = (R/k)(1 − e−kt) + A0e
−kt

17. A =
∫ t

0

R(u)ek(u−t)du + A0e
−kt 18. S =

1
50

(106 + 5t) − 15× 109

106 + 5t
grams

19. v =
mg

k
+
(
v0 −

mg

k

)
e−kt/m m/s
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§4.2 Systems of Linear First-order Differential Equations

In this section, we illustrate how linear algebra can be used to decouple systems of coupled
linear first-order differential equations. In Figure 4.1, the left container contains 1000 litres
of water in which has been dissolved 50 kilograms of potassium; the right container contains
2000 litres of pure water. At time t = 0, a mixture containing 10 kilograms of potassium for
each 100 litres of solution is pumped into the left container at the rate of 20 litres per minute.
Well-stirred mixture from the left container enters the right container at 10 litres per minute
and 5 litres per minute are pumped from right to left. Finally, mixture is removed from the
left container at 15 litres per minute and 5 litres per minute from the right container. As
a result, there is no increase in volumes in the containers; 25 litres enter the left container
each minute and 25 litres leave; 10 litres enter the right container each minute and 10 litres
leave. Suppose we let p1(t) and p2(t) be the amounts of potassium (in kilograms) in the
tanks as functions of time (in minutes). These functions can be determined by using the
fact that derivatives of p1(t) and p2(t) must be equal to the rate at which potassium enters
each container less the rate at which it leaves.

20 L/min 10 L/min

15 L/min 5 L/min 5 L/min

1000 L
2000 L

Figure 4.1

Potassium is pumped into the left container at 20(10/100) = 2 kg/min. It also en-
ters from the right container at 5(p2/2000) = p2/400 kg/min. It is removed from the
left container at 15(p1/1000) = 3p1/200 kg/min and pumped into the right container at
10(p1/1000) = p1/100 kg/min. Thus, for the left container,

dp1

dt
=
(

rate at which
potassium enters

)
−
(

rate at which
potassium leaves

)

=
(
2 +

p2

400

)
−
(

3p1

200
+

p1

100

)

= −p1

40
+

p2

400
+ 2. (4.4a)

Potassium is pumped into the right container from the left at p1/100 kg/min. It is pumped
back into the left at p2/400 kg/min and is drawn off for other purposes at the same rate.
Thus,

dp2

dt
=
(

rate at which
potassium enters

)
−
(

rate at which
potassium leaves

)

=
p1

100
− p2

200
. (4.5b)

When the initial conditions

p1(0) = 50, p2(0) = 0, (4.5c)

are added, we have a system of two coupled, first-order, linear, differential equations in p1(t)
and p2(t). In a differential equations course, these would be solved using operators, Laplace
transforms, and/or matrices. In the operator approach, the equations are decoupled but the
result is a second order equation in either p1(t) or p2(t). Laplace transforms do not decouple
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the equations; the transform replaces the system of differential equations with a system of
algebraic equations in the transforms of p1(t) and p2(t). In the matrix method, the system
is written in the form

dp
dt

= Ap + b ⇐⇒
d

dt

(
p1

p2

)
=
(
−1/40 1/400
1/100 −1/200

)(
p1

p2

)
+
(

2
0

)
. (4.6)

Eigenvalues and eigenvectors of the coefficient matrix A yield solutions of this vector dif-
ferential equation, and components then give solutions of the scalar equations. We use
eigenpairs in a fundamentally different way here to decouple the equations into first-order
equations. We will return to this example later when we have illustrated the technique in
examples with less cumbersome calculations.

Consider the system of coupled, first-order differential equations

dy1

dt
= y1 + 4y2 + 2,

dy2

dt
= 2y1 + 3y2 − t,

for y1(t) and y2(t), subject to the initial conditions y1(0) = 0 and y2(0) = 1. We can write
the system in matrix form as

dy
dt

= Ay + b ⇐⇒ d

dt

(
y1

y2

)
=
(

1 4
2 3

)(
y1

y2

)
+
(

2
−t

)
. (4.7)

Eigenvalues of A are defined by

0 = det
(

1 − λ 4
2 3 − λ

)
= (1 − λ)(3 − λ) − 8 = (λ + 1)(λ − 5).

Eigenvectors corresponding to λ1 = −1 are multiples of v1 =
(
−2
1

)
, and those correspond-

ing to λ2 = 5 are multiples of v2 =
(

1
1

)
. Let q1(t) and q2(t) denote the components of y(t)

with respect to the basis of eigenvectors,

y(t) = q1(t)v1 + q2(t)v2.

If b1 and b2 are the components of the vector b = (2,−t), with respect to the eigenvector
basis, then

(
2
−t

)
= b1v1 + b2v2 = b1

(
−2
1

)
+ b2

(
1
1

)
.

Equating coefficients leads to b1 = −(t + 2)/3 and b2 = (2− 2t)/3. We could also have used
the transition matrix

T =
(
−2 1
1 1

)−1

= −
1
3

(
1 −1
−1 −2

)

to find the components of b with respect to the eigenvector basis,

Tb = −1
3

(
1 −1
−1 −2

)(
2
−t

)
= −1

3

(
2 + t

−2 + 2t

)
.

Equation 4.7 is a vector differential equation for the components y1(t) and y2(t) of y(t) with
respect to the basis {(1, 0), (0, 1)}. When we use the eigenvectors as a basis, the differential
equation becomes

d

dt

(
q1

q2

)
=
(

λ1 0
0 λ2

)(
q1

q2

)
+
(

b1

b2

)
=
(
−1 0
0 5

)(
q1

q2

)
− 1

3

(
2 + t

−2 + 2t

)
.

Equating entries gives the system of differential equations
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dq1

dt
= −q1 −

1
3
(2 + t),

dq2

dt
= 5q2 +

2
3
(1 − t).

The eigenvalue basis has decoupled the system into linear first-order differential equations
in q1(t) and q2(t). When integrating factors are calculated, solutions are

q1(t) = C1e
−t − 1

3
(t + 1), q2(t) = C2e

5t +
2
75

(5t − 4),

where C1 and C2 are constants. To evaluate C1 and C2, we can transform the initial
conditions to the eigenvector basis, or return to the natural basis. To do the latter we write

y(t) = q1(t)v1 + q2(t)v2 =
[
C1e

−t − 1
3
(t + 1)

](
−2
1

)
+
[
C2e

5t +
2
75

(5t − 4)
](

1
1

)
.

When we take components, we obtain

y1(t) = −2C1e
−t +

2
3
(t + 1) + C2e

5t +
2
75

(5t − 4) = −2C1e
−t + C2e

5t +
2
25

(10t + 7),

y2(t) = C1e
−t − 1

3
(t + 1) + C2e

5t +
2
75

(5t − 4) = C1e
−t + C2e

5t − 1
25

(5t + 11).

The initial conditions require

0 = y1(0) = −2C1 + C2 +
14
25

, 1 = y2(0) = C1 + C2 −
11
25

.

These give C1 = 1/3 and C2 = 8/75. The solution of the system of differential equations is

y1(t) = −2
3
e−t +

8
75

e5t +
2
25

(10t + 7), y2(t) =
1
3
e−t +

8
75

e5t − 1
25

(5t + 11).

We are now ready to return to the containers with potassium. Eigenvalues of matrix A
in equation 4.6 are defined by

0 = det
(
−1/40− λ 1/400

1/100 −1/200− λ

)
.

They are λ =
−3 ±

√
5

200
. We denote them by λ1 =

−3 +
√

5
200

and λ2 = −
3 +

√
5

200
. Corre-

sponding eigenvectors are v1 =
(

1
4 + 2

√
5

)
, and v2 =

(
1

4 − 2
√

5

)
. Let q1(t) and q2(t)

denote the components of p(t) with respect to the basis of eigenvectors,

p(t) = q1(t)v1 + q2(t)v2.

If b1 and b2 are the components of the vector b = (2, 0), with respect to the eigenvector
basis, then

(
2
0

)
= b1v1 + b2v2 = b1

(
1

4 + 2
√

5

)
+ b2

(
1

4 − 2
√

5

)
.

Equating coefficients leads to b1 = 1− 2/
√

5 and b2 = 1 + 2/
√

5. (Once again we could have
found the transition matrix from the natural basis to the eigenvector basis.) Equation 4.6
is a vector differential equation for the components p1(t) and p2(t) of p(t) with respect to
the basis {(1, 0), (0, 1)}. When we use the eigenvectors as a basis, the differential equation
becomes

d

dt

(
q1

q2

)
=
(

λ1 0
0 λ2

)(
q1

q2

)
+
(

b1

b2

)
.

Equating entries gives the system of differential equations
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dq1

dt
= λ1q1 + b1,

dq2

dt
= λ2q2 + b2.

The eigenvalue basis has decoupled the system into linear first-order differential equations
in q1(t) and q2(t). When integrating factors are calculated, solutions are

q1(t) = C1e
λ1t − b1

λ1
, q2(t) = C2e

λ2t − b2

λ2
,

where C1 and C2 are constants. To evaluate C1 and C2, we can transform the initial
conditions to the eigenvector basis, or return to the natural basis. To use the natural basis,
we write

p(t) = q1(t)v1 + q2(t)v2 =
(

C1e
λ1t − b1

λ1

)(
1

4 + 2
√

5

)
+
(

C2e
λ2t − b2

λ2

)(
1

4 − 2
√

5

)
.

The initial conditions require
(

50
0

)
=
(

C1 −
b1

λ1

)(
1

4 + 2
√

5

)
+
(

C2 −
b2

λ2

)(
1

4 − 2
√

5

)
.

When we equate components and solve for C1 and C2, we get C1 = −25 and C2 = −25.
With b1/λ1 = 10(

√
5 − 5) and b2/λ2 = −10(

√
5 + 5), we obtain

p(t) =
[
−25eλ1t − 10(

√
5 − 5)

]( 1
4 + 2

√
5

)
+
[
−25eλ2t + 10(

√
5 + 5)

]( 1
4 − 2

√
5

)
.

The numbers of kilograms of potassium in the tanks is therefore

p1(t) = −25eλ1t + 10(5 −
√

5) − 25eλ2t + 10(
√

5 + 5)
= −25eλ1t − 25eλ2t + 100,

p2(t) = (4 + 2
√

5)[−25eλ1t + 10(5−
√

5] + (4 − 2
√

5)[−25eλ2t + 10(
√

5 + 5)]

= −50(2 +
√

5)eλ1t − 50(2−
√

5)eλ2t + 200.

Since λ1 and λ2 are both negative,
limits of p1(t) and p2(t) for large t
are 100 and 200 kilograms respec-
tively. These functions are plotted
in Figure 4.2.

t500 1000

200

100

P t2( )

P t1( )

Figure 4.2

EXERCISES 4.2

In Exercises 1–4 use eigenvectors to find the solution of the initial-value problem.

1.

dy1

dt
= y1 + y2,

dy2

dt
= 4y1 − 2y2

y1(0) = 1
y2(0) = 6 2.

dy1

dt
= y1 + 3y2 + 2t + 3,

dy2

dt
= 4y1 + 5y2 − t

y1(0) = −1
y2(0) = 1

3.

dy1

dt
= 4y1 + 2y2 + 2y3,

dy2

dt
= 2y1 + 4y2 + 2y3,

dy3

dt
= 2y1 + 2y2 + 4y3

y1(0) = 1
y2(0) = 0
y3(0) = 1

4.

dy1

dt
= 4y1 + y3 + 1,

dy2

dt
= −2y1 + y2 − 3,

dy3

dt
= −2y1 + y3

y1(0) = −1
y2(0) = 1
y3(0) = 0



106 SECTION 4.2

5. Container 1 in the figure below contains 50 litres of water with 25 kilograms of dissolved sugar. Container
2 has 50 litres of pure water. Pure water is added to container 1 at 3 litres per minute. Well-stirred
mixture is pumped from container 1 into container 2 at 4 litres per minute, and simultaneously from
container 2 into container 1 at 1 litre per minute. Mixture is also drawn from container 2 at 3 litres per
minute. Find the numbers of kilograms of sugar in the containers as functions of time t. Are there limits
as t → ∞?

3 L/min 4 L/min

1 L/min 3 L/min

50 L 50 L

Container 1 Container 2

6. Container 1 in the figure below contains 100 litres of pure water; container 2 has 100 litres of water in
which has been dissolved 200 kilograms of salt. Solution with 2 kilograms of salt per litre of solution is
pumped into container 1 at 6 litres per minute. Well-stirred mixture is pumped from container 1 into
container 2 at 3 litres per minute, and simultaneously from container 2 into container 1 at 1 litre per
minute. Mixtures are drawn from containers 1 and 2 at 4 and 2 litres per minute respectively. Find the
numbers of kilograms of salt in the containers as functions of time t. Are there limits as t → ∞?

6 L/min 3 L/min

1 L/min 2 L/min

100 L 100 L

Container 1 Container 24 L/min

7. Repeat Exercise 5 if pure water entering container 1 is replaced by a solution containing 2 kilograms of
sugar per litre of liquid.

8. The containers below each have 100 cubic metres of pure water. A solution containing 1 kilogram of
salt per cubic metre of liquid is added to container 1 at a rate of 1 cubic metre per minute. Well-stirred
mixture is pumped from container 1 to container 2 at 3 cubic metres per minute. Water evaporates from
container 2 at 1 cubic metre per minute, and mixture is pumped from container 2 to container 1 at 2
cubic metre per minute. Find the numbers of kilograms of salt in the containers as functions of time t.
Are there limits as t → ∞?

1 m 3 m

2 m

100 m 100 m

Container 1 Container 2

3 3

3 3

3

3

/min /min

1 m /min

/min

9. Container 1 in the figure below contains 100 litres of solution with salt concentration 1/2 kilogram per
litre. Container 2 has 200 litres of solution with concentration 1/10 kilogram per litre. Solution is pumped
from container 1 to container 2 at 2 litres per minute, and back to container 1 at the same rate. Find
the numbers of kilograms of salt in the containers as functions of time t. Are there limits as t → ∞?
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2 L/min

2 L/min

100 L
200 L

Container 1 Container 2

10. Container 1 below has 500 kilograms of potassium dissolved in 500 litres of water. Container 2 has 2000
litres of pure water. Pure water is added to container 1 at 30 litres per hour, and the well-stirred mixture
is pumped into container 2 at 40 litres per hour. Solution is pumped back from container 2 to container
1 at 10 litres per hour, and also removed at 30 litres per hour. Find the maximum amount of potassium
ever found in container 2.

30 L/hr 40 L/hr

10 L/hr 30 L/hr

500 L
2000 L

Container 1 Container 2

11. One tank contains 150 cubic metres of pure water and a second contains 150 cubic metres of water in
which 100 kilograms of salt has been dissolved. Well-stirred mixtures circulate from each tank to the
other at the rate of 10 cubic metres per hour. When does the tank that started with no salt have 25
kilograms of salt?

12. You must have noticed that in all mixing problems, the volumes in containers never changes. Our
decoupling method is not applicable to problems with changing volumes. To illustrate, suppose the
situation in Figure 4.1 is the same except that mixture is not returned from the right container to the
left container, nor drawn from either container, until the volume of solution in the right container reaches
2500 litres.
(a) Set up a system of differential equations for the amount of potassium in each container.
(b) Explain why neither operators nor Laplace transforms are conducive to the system.

Answers

1. y1(t) = 2e2t − e−3t, y2(t) = 2e2t + 4e−3t

2. y1(t) = −(3/2)e−t + (23/98)e7t + 13(7t + 1)/49, y2(t) = e−t + (23/49)e7t − (63t + 23)/49
3. y1(t) = (2/3)e8t + (1/3)e2t, y2(t) = (2/3)e8t − (2/3)e2t, y3(t) = (2/3)e8t + (1/3)e2t

4. y1(t) = −(4/3)e3t + (1/2)e2t − 1/6, y2(t) = (4/3)e3t − e2t − 2et + 8/3, y3(t) = (4/3)e3t − e2t − 1/3
5. (25/2)(e−t/25 + e−3t/25), 25(e−t/25 − e−3t/25); 0, 0
6. 200 + (200/

√
7 − 100)e(−5+

√
7)t/100 − (200/

√
7 + 100)e−(5+

√
7)t/100

200− (300/
√

7)e(−5+
√

7)t/100 + (300/
√

7)e−(5+
√

7)t/100; 200, 200
7. 100− (125/2)e−t/25 − (25/2)e−3t/25, 100 + 25e−3t/25 − 125e−t/25; 100, 100
8. 12 − 12e−t/20 + 2t/5, −12 + 12e−t/20 + 3t/5; no limits
9. 70/3 + (80/3)e−3t/100, 140/3− (80/3)e−3t/100; 70/3, 140/3
10. [1000(5 +

√
13)/3][(5 −

√
13)/(5 +

√
13)](5+

√
13)/(2

√
13) kg

11. (15/2) ln 2 hours

12.(a)
dP1

dt
= 2 −

P1

100 + t
+ 2 +

P2

500
−

P1

60
,

dP2

dt
=

P1

100 + t
+

P1

150
−

P2

250
(b) When we rewrite the system in matrix form, the matrix of coefficients is not time independent.
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§4.3 Linear Second-order Differential Equations

Linear second-order differential equations are of the form

P (t)
d2y

dt2
+ Q(t)

dy

dt
+ R(t)y = F (t), (4.8)

where P (t), Q(t), R(t), and F (t) are given functions. The equation is said to be homogeneous
if F (t) ≡ 0, and nonhomogeneous otherwise. Even the homogeneous equation

P (t)
d2y

dt2
+ Q(t)

dy

dt
+ R(t)y = 0, (4.9)

which is simpler than the corresponding nonhomogeneous equation, can be notoriously dif-
ficult to solve, but it can also be very easy to solve. The fact that the equation is linear
leads to the superposition principle.

Theorem 4.1 (Superposition Principle) If y1(t) and y2(t) are any two solutions of differential equa-
tion 4.9, then so also is any linear combination of them, namely, c1y1(t) + c2y2(t) for any
constants c1 and c2. Furthermore, any such linear combination of two linearly independent
solutions is a general solution of the differential equation.

What this means is that to find a general solution of differential equation 4.9, we need
only find two linearly independent solutions y1(t) and y2(t); their superposition gives a
general solution.

Closure of the set of solutions under linear combinations suggests, and it is straightfor-
ward to check, that the set of solutions of equation 4.9 is a real vector space with solutions
being vectors in the space. Any two linearly independent solutions constitute a basis for the
space, which therefore has dimension two.

One case when equation 4.9 is easy to solve is when P , Q, and R are constant functions.
This places severe restriction on P , Q and R, but the resulting equation has many important
applications. Consider then the homogeneous equation

p
d2y

dt2
+ q

dy

dt
+ ry = 0, (4.10)

where p, q, and r are constants. To find linearly independent solutions y1(t) and y2(t) of
this equation, we look for solutions of the form y(t) = emt, for some constant m. When we
substitute this into the differential equation, we obtain

0 = pm2emt + qmemt + remt = emt(pm2 + qm + r).

Since the exponential cannot vanish, we must set pm2 + qm + r = 0. This is called the
auxiliary equation associated with the differential equation. If m is a real root of the
auxiliary equation, then emt is a solution of the differential equation. If the auxiliary equation
has two real, distinct roots, then a general solution of the differential equation results. But
the reader must realize that the quadratic equation could have equal real roots, and/or
complex roots, and in such cases a general solution does not immediately result. We will be
able to adapt to these situations and still find a general solution of the differential equation.
We consider some examples before stating general results. The auxiliary equation associated
with the differential equation

y′′ − 2y′ − 3y = 0

is 0 = m2 − 2m − 3 = (m − 3)(m + 1) with roots m = −1 and m = 3. Thus, y1(t) = e−t

and y2(t) = e3t are linearly independent solutions of the differential equation, and a general
solution is y(t) = c1e

−t + c2e
3t.

The auxiliary equation associated with the differential equation
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y′′ + 6y′ + 9y = 0

is 0 = m2 + 6m + 9 = (m + 3)2 with equal roots m = −3, −3. Only one solution of
the form emt is found, y1(t) = e−3t. We need a second solution to superpose with y1(t)
to obtain a general solution. Suppose we are sufficiently intuitive to think that a second
solution might be of the form y2(t) = u(t)e−3t; that is, the product of some yet to be
determined function u(t) times the already known solution y1(t). If we substitute this into
the differential equation, we find

0 = [u′′e−3t − 6u′e−3t + 9ue−3t] + 6[u′e−3t − 3ue−3t] + 9ue−3t = u′′e−3t.

This implies that u′′(t) = 0, from which u(t) = c1t + c2, where c1 and c2 are constants. If
we set c1 = 0 and c2 = 1, then y2(t) = e−3t, our original solution y1(t). If we set c1 = 1 and
c2 = 0, we obtain a new solution y2(t) = te−3t, a solution independent of y1(t). In other
words, a pair of linearly independent solutions of the differential equation is y1(t) = e−3t

and y2(t) = te−3t. A general solution is their superposition, y(t) = c1e
−3t + c2te

−3t =
(c1 + c2t)e−3t.

For our final example, consider

y′′ + 2y′ + 10y = 0.

The auxiliary equation is 0 = m2 + 2m + 10 with roots

m =
−2±

√
4 − 40

2
= −1 ± 3i.

This means that there is no real exponential y = emt that satisfies the differential equation.
If, however, we form complex exponentials y1(t) = e(−1+3i)t and y2(t) = e(−1−3i)t, and
superpose these solutions, then

y(t) = Ae(−1+3i)t + Be(−1−3i)t

must also be a solution for any pair of constants A and B, real or complex. In general, this
solution is a complex one, and we mean complex, as opposed to real, not complex because
it is difficult. But we are interested in real solutions of the (real) differential equation, not
complex ones. We now show how to derive real solutions from this complex one using Euler’s
identity, eθi = cos θ + i sin θ. If we write the complex solution in the form

y(t) = Ae−te3ti + Be−te−3ti,

and use Euler’s identity on e3ti and e−3ti, we get

y(t) = Ae−t(cos 3t + i sin 3t) + Be−t(cos (−3t) + i sin (−3t))
= Ae−t(cos 3t + i sin 3t) + Be−t(cos 3t − i sin 3t)
= e−t[(A + B) cos 3t + i(A − B) sin 3t].

Suppose now that c1 and c2 are any real constants whatsoever. If we set A = (c1 − c2i)/2
and B = (c1 + c2i)/2, then A + B = c1 and i(A − B) = c2. Thus, the function

y(t) = e−t(c1 cos 3t + c2 sin 3t)

is a solution of the differential equation for any real constants c1 and c2; that is, it is real, and
it is a general solution of the differential equation. It has been derived from the complex
roots m = −1 ± 3i of the equation m2 + 2m + 10 = 0. Note that what multiplies t in
the exponential is the real part of these complex numbers, and what multiplies t in the
trigonometric functions is the imaginary part.

What we have seen in these three examples is typical for all linear, second-order, ho-
mogeneous, differential equations 4.10. We summarize results in the following theorem.
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Theorem 4.2 If pm2 + qm + r = 0 is the auxiliary equation associated with differential equation 4.10,
then:

1. when roots m1 and m2 are real and distinct, a general solution of the differential equation
is

y(t) = c1e
m1t + c2e

m2t; (4.11a)

2. when m is a double root, a general solution of the differential equation is

y(t) = (c1 + c2t)emt; (4.12b)

3. when roots are complex a ± bi, a general solution of the differential equation is

y(t) = eat(c1 cos bt + c2 sin bt). (4.13c)

Here are some further examples.

Example 4.3 Find general solutions for each of the following differential equations:

(a) 2y′′ + 4y′ − 7y = 0 (b) y′′ + 10y′ + 25y = 0 (c) 3y′′ + 3y′ + 5y = 0

Solution (a) The auxiliary equation is 2m2 + 4m − 7 = 0 with solutions

m =
−4±

√
16 + 56
4

=
−2± 3

√
2

2
.

A general solution of the differential equation is y(t) = c1e
(−2+3

√
2)t/2 + c2e

−(2+3
√

2)t/2.
(b) The auxiliary equation is 0 = m2 + 10m + 25 = (m + 5)2 with solutions m = −5,−5. A
general solution of the differential equation is y(t) = (c1 + c2t)e−5t.
(c) The auxiliary equation is 3m2 + 3m + 5 = 0 with solutions

m =
−3 ±

√
9 − 60

6
=

−3±
√

51i

6
.

A general solution of the differential equation is y(t) = e−t/2

(
c1 cos

√
51t
6

+ c2 sin
√

51t
6

)
.•

Nonhomogeneous Linear Differential Equations

We now consider the situation when differential equation 4.8 is nonhomogeneous, so
that F (t) is not identically zero. The following theorem tells us how to solve such equations.

Theorem 4.3 A general solution of the differential equation 4.8 is y(t) = yh(t) + yp(t), where yh(t) is a
general solution of the associated homogeneous equation (the equation obtained when F (t)
is replaced by 0), and yp(t) is any particular solution of the given equation.

Because of this theorem discussions of nonhomogeneous differential equations can be
divided into two parts. First, find a general solution yh(t) of the associated homogeneous
equation. To this, add any particular solution yp(t) of nonhomogeneous equation 4.8. There
are a number of methods for finding yp(t), including undetermined coefficients, annihilators,
operators, and variation of parameters. Each method has its advantages and disadvantages.
We discuss only the method of undetermined coefficients. It is applicable to differential
equations with constant coefficients but, in addition, F (t) must be a power tn, n a nonneg-
ative integer, an exponential ept, a sine sin pt, a cosine cos pt, and/or any sums or products
thereof.

Method of Undetermined Coefficients for a Particular Solution

We illustrate the method before stating two general rules. For the equation



SECTION 4.3 111

y′′ + y′ − 6y = e4t,

the method essentially says that Ae4t is the simplest function that could conceivably yield
e4t when substituted into the left side of the differential equation. Consequently, it is natural
to assume that yp = Ae4t and attempt to determine the unknown coefficient A. Substitution
of this function into the differential equation gives

16Ae4t + 4Ae4t − 6Ae4t = e4t.

If we divide by e4t, then

14A = 1 and A = 1
14 .

A particular solution is therefore yp = e4t/14.
We illustrate a few more possibilities in the following example.

Example 4.4 Find a particular solution of y′′ + y′ − 6y = F (t) when:

(a) F (t) = 6t2 + 2t + 3 (b) F (t) = 2 sin 2t (c) F (t) = te−t − e−t

Solution (a) Since terms in t2, t, and constants yield terms in t2, t, and constants when
substituted into the left side of the differential equation, we attempt to find a particular
solution of the form yp = At2 + Bt + C. Substitution into the differential equation gives

(2A) + (2At + B) − 6(At2 + Bt + C) = 6t2 + 2t + 3,

or

(−6A)t2 + (2A − 6B)t + (2A + B − 6C) = 6t2 + 2t + 3.

Since the functions {1, t, t2} are linearly independent, this equation can hold for all values
of t only if coefficients of corresponding powers of t are identical. Equating coefficients then
gives

−6A = 6, 2A − 6B = 2, 2A + B − 6C = 3.

These imply that A = −1, B = −2/3, C = −17/18, and

yp = −t2 − 2t

3
− 17

18
.

(b) Since terms in sin 2t and cos 2t yield terms in sin 2t when substituted into the left side
of the differential equation, we assume that yp = A sin 2t + B cos 2t. Substitution into the
differential equation gives

(−4A sin 2t − 4B cos 2t) + (2A cos 2t − 2B sin 2t)
− 6(A sin 2t + B cos 2r) = 2 sin 2t,

or

(−10A − 2B) sin 2t + (2A − 10B) cos 2t = 2 sin 2t.

Equating coefficients of sin 2t and cos 2t gives

−10A− 2B = 2, 2A − 10B = 0.

These imply that A = −5/26, B = −1/26, and hence

yp = − 1
26

(5 sin 2t + cos 2t).

(c) Since terms in te−t and e−t yield terms in te−t and e−t when substituted into the left
side of the differential equation, we assume that yp = Ate−t + Be−t. Substitution into the
differential equation gives
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(Ate−t − 2Ae−t + Be−t) + (−Ate−t + Ae−t − Be−t)
− 6(Ate−t + Be−t) = te−t − e−t,

or

(−6A)te−t + (−A − 6B)e−t = te−t − e−t.

Equating coefficients of e−t and te−t yields

−6A = 1, −A − 6B = −1.

These imply that A = −1/6, B = 7/36, and hence

yp = −(1/6)te−t + (7/36)e−t.•

The following rule encompasses each part of this example.

Rule 1

If a term of F (t) consists of a power (tn), an exponential (ept), a sine (sin pt), a cosine (cos pt),
or any product thereof, assume as a part of yp a constant multiplied by that term plus a
constant multiplied by any linearly independent function arising from it by differentiation.

For Example 4.4(a), since F (t) contains the term 6t2, we assume yp contains At2.
Differentiation of At2 yields a term in t and a constant so that we form yp = At2+Bt+C. No
new terms for yp are obtained from the terms 2t and 3 in F (t).

For Example 4.4(b), we assume that yp contains A sin 2t to account for the term 2 sin 2t
in F (t). Differentiation of A sin 2t gives a linearly independent term in cos 2t so that we
form yp = A sin 2t + B cos 2t.

For Example 4.4(c), since F (t) contains the term te−t, we assume that yp contains
Ate−t. Differentiation of Ate−t yields a term in e−t so that we form yp = Ate−t + Be−t. No
new terms for yp are obtained from the term −e−t in F (t).

Example 4.5 What is the form of the particular solution predicted by Rule 1 for the differential equation

y′′ + 15y′ − 6y = t2e4t + t + t cos t?

Solution Rule 1 suggests that

yp = At2e4t + Bte4t + Ce4t + Dt + E + Ft cos t + Gt sin t

+ H cos t + I sin t.•

Unfortunately, exceptions to Rule 1 do occur. For the differential equation y′′ + y =
cos t, Rule 1 would predict yp = A cos t + B sin t. If we substitute this into the differential
equation we obtain the absurd identity 0 = cos t, and certainly no equations to solve for A
and B. This result could have been predicted had we first calculated yh(t). The auxiliary
equation m2 + 1 = 0 has solutions m = ±i so that yh(t) = C1 cos t + C2 sin t. Since yp as
suggested by Rule 1 is precisely yh with different names for the constants, then certainly
y′′

p + yp = 0. Suppose that as an alternative we multiply this yp by t, and assume that
yp = At cos t + Bt sin t. Substitution into the differential equation now gives

−2A sin t + 2B cos t = cos t.

Identification of coefficients requires A = 0, B = 1/2, and yp = (1/2)t sin t.
This example suggests that if yp predicted by Rule 1 is already contained in yh, then a

modification of yp is necessary. A precise statement of the situation is given in the following
rule.
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Rule 2

Suppose that a term in F (t) is of the form tnf(t) (n a nonnegative integer). Begin by writing
the form of a particular solution corresponding to this term as predicted by Rule 1. Now ask
whether f(t) can be obtained from yh(t) by specifying values for the arbitrary constants. If
the answer is no, we have the correct form for the particular solution. If the answer is yes,
we must modify the form of the particular solution by multiplying it by tk where k is the
multiplicity of the root of the auxiliary equation giving rise to f(t).

Rule 2 always takes precedence over Rule 1. To use this rule we first require yh(t). Then,
and only then, can we decide on the form of yp(t). As an illustration, consider the following
example.

Example 4.6 Find a general solution for y′′ − 2y′ + y = t3et.

Solution The auxiliary equation is m2 − 2m + 1 = 0 with root m = 1 of multiplicity 2,
from which

yh(t) = (C1 + C2t)et.

According to Rule 1, the particular solution should be At3et + Bt2et + Ctet + Det. Because
et can be obtained from yh by specifying C1 = 1 and C2 = 0, Rule 2 must be invoked. Since
this term results from the root m = 1 of multiplicity 2, we assume that

yp = t2(At3et + Bt2et + Ctet + Det) = At5et + Bt4et + Ct3et + Dt2et.

Substitution into the differential equation and simplification gives

20At3et + 12Bt2et + 6Ctet + 2Det = t3et.

Equating coefficients gives

20A = 1, 12B = 0, 6C = 0, 2D = 0.

Thus, yp(t) = (1/20)t5et, and a general solution of the differential equation is therefore

y(t) = (C1 + C2t)et +
1
20

t5et.•

Applications of Linear Second Order Differential Equations

Many vibration problems give rise to linear, second-order, constant-coefficient differ-
ential equations, and such problems are often modeled, at least in the first instance, by
vibrating mass-spring systems. Consider the situation in Figure 4.3 of a spring attached to
a solid wall on one end and a mass on the other. If the mass is somehow set into horizontal
motion along the axis of the spring it will continue to do so for some time. The nature of
the motion depends on a number of factors such as the tightness of the spring, the amount
of mass, whether there is friction between the mass and the surface along which it slides,
whether there is friction between the mass and the medium in which it slides, and whether
there are any other forces acting on the mass.

Wall

Mass

Unstretched
spring Wall

Stretched Spring

Mass

Equilibrium position
of mass

x x= 0

Figure 4.3 Figure 4.4
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Our objective is to predict the position of the mass at any given time, knowing the forces
acting on the mass, and how motion is initiated. We begin by establishing a means by which
to identify the position of the mass. Most convenient is to let x represent the position of
the mass relative to the position that it would occupy were the spring unstretched and
uncompressed, called the equilibrium position (Figure 4.4). We shall then look for x as
a function of time t, taking t = 0 at the instant that motion is initiated. To determine
the differential equation describing oscillations of the mass, we analyze the forces acting on
the mass when it is at position x. First there is the spring. Hooke’s Law states that when
a spring is stretched, the force exerted by the spring in an attempt to restore itself to an
unstretched position is proportional to the amount of stretch in the spring. Since x not only
identifies the position of the mass, but also represents the stretch in the spring, it follows
that the restoring force exerted by the spring on the mass at position x is −kx, where k > 0
is the constant of proportionality, called the spring constant. The negative sign indicates
that the force is to the left when x is positive and the spring is stretched. In a compressed
situation, the spring force should be positive (to the right). This is indeed the case, because
with compression, x is negative, and therefore −kx is positive.

In many vibration problems, there is a damping force, a force opposing motion that
has magnitude directly proportional to the velocity of the mass. It might be a result of air
friction with the mass, or it might be due to a mechanical device like a shock absorber on
a car, or a combination of such forces. Damping forces are modelled by what is called a
dashpot; it is shown in (Figure 4.5). Because damping forces are proportional to velocity,
and velocity is given by dx/dt, they can be represented in the form −β(dx/dt), where β > 0
is a constant. The negative sign accounts for the fact that damping forces oppose motion;
they are in the opposite direction to velocity.

Wall
Spring

Mass

x x= 0

Dashpot

Figure 4.5

There could be other forces that act on the mass; they could depend on both the
position of the mass and time. In the event that they depend only on time, we denote them
by F (t). The total force acting on the mass is therefore −kx − β(dx/dt) + F (t). According
to Newton’s second law, the acceleration of the mass due to this force is equal to the force
divided by the mass (provided mass is constant); that is, acceleration=(force)/(mass), or
force=(mass)(acceleration). Since acceleration is the second derivative of the displacement
or position function, d2x/dt2, we can write that

−kx − β
dx

dt
+ F (t) = M

d2x

dt2
. (4.14)

When this equation is rearranged into the form,

M
d2x

dt2
+ β

dx

dt
+ kx = F (t), (4.15)

we have a linear, second-order differential equation for the position function x(t). The
equation is homogeneous or nonhomogeneous depending on whether forces other than the
spring and damping forces act on the mass.

Before considering specific situations, we show that when masses are suspended verti-
cally from springs, their motion is also governed by equation 4.15, (provided we choose the
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origin for vertical displacements wisely). To describe the position of the mass M in Figure
4.6 as a function of time t, we need a vertical coordinate system.

Mass

y

y=0
when spring
unstretched

Mass

x

x=0
at equilibrium
position

Figure 4.6 Figure 4.7

There are two natural places to choose the origin. One is to choose y = 0 at the position
of M when the spring is unstretched. Suppose we do this and choose y as positive upward.
When M is a distance y away from the origin, the restoring force of the spring is −ky. In
addition, if g = 9.81 is the acceleration due to gravity, then the force of gravity on M is
−Mg. In the presence of damping forces or a dashpot, there is a force of the form −β(dy/dt),
where β is a positive constant. If F (t) represents all other forces acting on M , then the total
force on M is −ky − Mg − β(dy/dt) + F (t), and Newton’s second law for the acceleration
of M gives

−ky − Mg − β
dy

dt
+ F (t) = M

d2y

dt2
.

Consequently, the differential equation that determines the position y(t) of M relative to
the unstretched position of the spring is

M
d2y

dt2
+ β

dy

dt
+ ky = −Mg + F (t). (4.16)

The alternative possibility for describing vertical oscillations is to attach M to the spring
and slowly lower M until it reaches an equilibrium position. At this position, the restoring
force of the spring is exactly equal to the force of gravity on the mass, and the mass, left by
itself, will remain motionless. If s is the amount of stretch in the spring at equilibrium, and
g is the acceleration due to gravity, then at equilibrium

ks − Mg = 0, where s > 0 and g > 0. (4.17)

Suppose we take the equilibrium position as x = 0 and x as positive upward (Figure
4.7). When M is a distance x away from its equilibrium position, the restoring force of the
spring on M is k(s − x). The force of gravity remains as −Mg, and that of the damping
force is −β(dx/dt). If F (t) accounts for any other forces acting on M , Newton’s second law
implies that

M
d2x

dt2
= k(s − x) − Mg − β

dx

dt
+ F (t),

or,

M
d2x

dt2
+ β

dx

dt
+ kx = −Mg + ks + F (t).
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But according to equation 4.17, ks − Mg = 0, and hence

M
d2x

dt2
+ β

dx

dt
+ kx = F (t). (4.18)

This is the differential equation describing the displacement x(t) of M relative to the equi-
librium position of M .

Equations 4.16 and 4.18 are both linear second-order differential equations with constant
coefficients. The advantage of equation 4.18 is that nonhomogeneity −Mg is absent, and this
is simply due to a convenient choice of dependent variable (x as opposed to y). Physically,
there are two parts to the spring force k(s−x); a part ks and a part −kx. Gravity is always
acting on M , and that part ks of the spring force is counteracting gravity in an attempt to
restore the spring to its unstretched position. Because these forces always cancel, we might
just as well eliminate both of them from our discussion. This leaves −kx, and we therefore
interpret −kx as the spring force attempting to restore the mass to its equilibrium position.

If we choose equation 4.18 to describe vertical oscillations (and this equation is usually
chosen over 4.16), we must remember three things: x is measured from equilibrium, −kx is
the spring force attempting to restore M to its equilibrium position, and gravity has been
taken into account.

Equation 4.18 for vertical oscillations and equation 4.15 for horizontal oscillations are
identical; we have the same differential equation describing either type of oscillation. In both
cases, x measures the distance of the mass from its equilibrium position. In the horizontal
case, this is from the position of the mass when the spring is unstretched; in the vertical
case, this is from the position of the mass when it hangs motionless at the end of the spring.

There are three basic ways to initiate motion. First, we can move the mass away from
its equilibrium position and then release it, giving it an initial displacement but no initial
velocity. Secondly, we can strike the mass at the equilibrium position, imparting an initial
velocity but no initial displacement. And finally, we can give the mass both an initial
displacement and an initial velocity. Each of these methods adds two initial conditions to
the differential equation.

Undamped, Unforced Vibrations

In the remainder of this section, we begin our studies with undamped (β = 0), unforced
(F (t) = 0) vibrations. We begin with two numerical examples, and finish with a general
discussion.

Example 4.7 A 2-kilogram mass is suspended vertically from a spring with constant 32 newtons per
metre. The mass is raised 10 centimetres above its equilibrium position and then released.
If damping is ignored, find the position of the mass as a function of time.

Solution If we choose x = 0 at the equilibrium position of the mass and x positive
upward, differential equation 4.18 for the motion x(t) of the mass becomes

2
d2x

dt2
+ 32x = 0, or,

d2x

dt2
+ 16x = 0,

along with the initial conditions x(0) = 1/10, x′(0) = 0. The auxiliary equation m2 +16 = 0
has solutions m = ±4i. Consequently,

x(t) = C1 cos 4t + C2 sin 4t.

The initial conditions require

1/10 = C1, 0 = 4C2.

Thus,
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x(t) =
1
10

cos 4t m.

A graph of this function (Figure 4.8)
illustrates that the mass oscillates about
its equilibrium position forever. This is
a direct result of the fact that damping
has been ignored. The mass oscillates up

x

t2 4 6

0.1

-0.1

and down from a position 10 cm above the Figure 4.8
equilibrium position to a position 10 cm
below the equilibrium position. We call 10 cm the amplitude of the oscillations. It takes
2π/4 = π/2 seconds to complete one full oscillation, and we call this the period of the
oscillations. The frequency of the oscillations is the number of oscillations that take place
each second and this is the reciprocal of the period, namely 2/π Hz (hertz). Oscillations of
this kind are called simple harmonic motion.•

The spring in this example might be called “loose”. We can see this from equation
4.17. Substitution of M = 2, k = 32, and g = 9.81 gives s = 0.61 metres; that is, with
a 2 kilogram mass suspended at rest from the spring there is a stretch of 61 centimetres.
The period of oscillations π/2 is quite long and the frequency of oscillations is small 2/π.
Contrast this with what might be called a stiff spring in the following example.

Example 4.8 The 2-kilogram mass in Example 4.7 is suspended vertically from a spring with constant
3200 newtons per metre. The mass is raised 10 centimetres above its equilibrium position
and given an initial velocity of 2 metres per second downward. If damping is ignored, find
the position of the mass as a function of time.

Solution The differential equation governing motion is

2
d2x

dt2
+ 3200x = 0, or,

d2x

dt2
+ 1600x = 0,

along with the initial conditions x(0) = 1/10, x′(0) = −2. The auxiliary equation m2 +
1600 = 0 has solutions m = ±40i. Consequently,

x(t) = C1 cos 40t + C2 sin 40t.

The initial conditions require

1/10 = C1, −2 = 40C2.

Thus,

x(t) =
1
10

cos 40t −
1
20

sin 40t m.

It is more convenient to express this function in the form A sin (40t + φ). To find A and φ,
we set

1
10

cos 40t− 1
20

sin 40t = A sin (40t + φ) = A[sin 40t cosφ + cos 40t sin φ].

Because sin 40t and cos 40t are linearly independent functions we equate coefficients to obtain

1
10

= A sin φ,
−1
20

= A cosφ.

When these are squared and added,

1
100

+
1

400
= A2 =⇒ A =

√
5

20
.

It now follows that φ must satisfy the equations



118 SECTION 4.3

1
10

=
√

5
20

sinφ,
−1
20

=
√

5
20

cosφ.

The smallest positive angle satisfying these is φ = 2.03 radians. The position function of
the mass is therefore

x(t) =
√

5
20

sin (40t + 2.03) m,

a graph of which is shown in Figure 4.9.
The amplitude

√
5/20 of the oscillations is

slightly larger than that in Example 4.7
due to the fact that the mass was given not
only an initial displacement of 10 cm, but
also an initial velocity. The spring, with

x

t

-0.1

0.2 0.4 0.6

0.1

constant k = 3200, is one hundred times Figure 4.9
as tight as that in Example 4.7. The result
is a period π/20 s for the oscillations, one-tenth that in Example 4.7, and ten times as many
oscillations per second (frequency is 20/π Hz).•

General Discussion of Undamped, Unforced Oscillations

When vibrations of a mass M attached to a spring with constant k are unforced and
undamped, the differential equation describing displacements x(t) of the mass relative to its
equilibrium position is

M
d2x

dt2
+ kx = 0. (4.19)

A general solution of this equation is

x(t) = C1 cos

√
k

M
t + C2 sin

√
k

M
t. (4.20)

This is simple harmonic motion that once again we prefer to write in the form

x(t) = A sin

(√
k

M
t + φ

)
, (4.21a)

where the amplitude is given by

A =
√

C2
1 + C2

2 , (4.21b)

and angle φ is defined by the equations

sinφ =
C1

A
and cosφ =

C2

A
. (4.21c)

Quantity
√

k/M , often denoted by ω, is called the angular frequency for the motion.

When divided by 2π,
ω

2π
=

√
k/M

2π
, is the frequency of the oscillations, the number of

oscillations that the mass makes each second. Its inverse
2π

ω
=

2π√
k/M

is the period of

the oscillations, the length of time for the mass to make one complete oscillation. Each of
these quantities depends only on the mass M and the spring constant k, not on the initial
displacement nor the initial velocity of the mass. Notice that frequency increases with k,
indicating that stiffer springs produce faster oscillations. Frequency decreases with M so
that heavier masses oscillate more slowly than lighter ones.
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Initial conditions enter the calculation of the amplitude of the oscillations and angle φ.
For instance, if the initial displacement and velocity (at time t = 0) are x0 and v0, then C1

and C2 must satisfy the equations

x0 = C1 and v0 =

√
k

M
C2 = ωC2.

With these initial conditions,

x(t) = A sin (ωt + φ), (4.22a)

where

A =

√
x2

0 +
v2
0

ω2
, (4.22b)

and φ is given by

sin φ =
x0

A
and cosφ =

v0/ω

A
. (4.22c)

The amplitude of the oscillations is constant because without damping, there is no release
of the initial energy supplied to the system with the initial displacement and velocity. Angle
φ is often called the phase angle or angular phase shift. Quantity −φ/ω is called the
phase shift as it represents the shift in time of the graph of A sin (ωt + φ) along the t-axis
relative to that of A sin ωt.

Alternative forms for solution 4.20 are discussed in Exercise 28.

Damped, Unforced Vibrations

Vibrating mass-spring systems without damping are unrealistic. All vibrations are sub-
ject to some degree of damping, and depending on the magnitude of the damping, oscillations
either gradually die out, or are completely expunged. Differential equation 4.18 describes
the motion of a mass on the end of a spring in the presence of a damping force (with damp-
ing constant β) proportional to velocity. When no other forces act on the mass, besides the
spring, and gravity for vertical oscillations, the differential equation becomes homogeneous,

M
d2x

dt2
+ β

dx

dt
+ kx = 0. (4.23)

We shall see that three types of motion occur called underdamped, critically damped, and
overdamped. We illustrate with an example of each before giving a general discussion.

Example 4.9 A 50-gram mass is suspended vertically from a very loose spring with constant 5 newtons per
metre. The mass is pulled 5 centimetres below its equilibrium position and given velocity
2 metres per second upward. If, during motion, the mass is acted on by a damping force
in newtons numerically equal to one-tenth the instantaneous velocity in metres per second,
find the position of the mass at any time.

Solution If we choose x = 0 at the equilibrium position of the mass and x positive
upward, the differential equation for the position x(t) of the mass is

50
1000

d2x

dt2
+

1
10

dx

dt
+ 5x = 0, or,

d2x

dt2
+ 2

dx

dt
+ 100x = 0,

along with the initial conditions x(0) = −1/20, x′(0) = 2. The auxiliary equation m2 +
2m + 100 = 0 has solutions

m =
−2±

√
4 − 400
2

= −1± 3
√

11i.
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Consequently,

x(t) = e−t[C1 cos (3
√

11t) + C2 sin (3
√

11t)].

The initial conditions require

− 1
20

= C1, 2 = −C1 + 3
√

11C2,

from which C2 = 13
√

11/220. The position of the mass is therefore given by

x(t) = e−t

[
− 1

20
cos (3

√
11t) +

13
√

11
220

sin (3
√

11t)

]
m.

The graph of this function in Figure 4.10 clearly indicates how the oscillations decrease in
time. This is an example of underdamped motion.•

x
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0.1
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-0.1

x

t

-0.05

1

Figure 4.10 Figure 4.11

Example 4.10 Repeat Example 4.9 if the damping constant is β = 2.

Solution The differential equation for the position x(t) of the mass is

50
1000

d2x

dt2
+ 2

dx

dt
+ 5x = 0, or,

d2x

dt2
+ 40

dx

dt
+ 100x = 0,

along with the same initial conditions. The auxiliary equation m2 + 40m + 100 = 0 has
solutions

m =
−40±

√
1600− 400
2

= −20± 10
√

3.

Consequently,

x(t) = C1e
(−20+10

√
3)t + C2e

(−20−10
√

3)t.

The initial conditions require

− 1
20

= C1 + C2, 2 = (−20 + 10
√

3)C1 + (−20 − 10
√

3)C2,

from which C1 = (2
√

3 − 3)/120 and C2 = −(2
√

3 + 3)/120. The position of the mass is
therefore given by

x(t) =

(
2
√

3 − 3
120

)
e(−20+10

√
3)t −

(
2
√

3 + 3
120

)
e−(20+10

√
3)t m.

The graph of this function is shown in Figure 4.11. This is an example of overdamped
motion; damping is so large that oscillations are completely eliminated. The mass simply
returns to the equilibrium position without passing through it.•

Example 4.11 Repeat Example 4.9 if the damping constant is β = 1.

Solution The differential equation for the position x(t) of the mass is
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50
1000

d2x

dt2
+

dx

dt
+ 5x = 0, or,

d2x

dt2
+ 20

dx

dt
+ 100x = 0,

along with the initial conditions x(0) = −1/20, x′(0) = 2. The auxiliary equation m2 +
20m + 100 = (m + 10)2 = 0 has a repeated solution m = −10. Consequently,

x(t) = (C1 + C2t)e−10t.

The initial conditions require

− 1
20

= C1, 2 = −10C1 + C2,

from which C2 = 3/2. The position of the
mass is therefore given by

x(t) =
(
− 1

20
+

3t

2

)
e−10t m.

The graph of this function is shown
in Figure 4.12. This is an example
of critically damped motion; any

x

t

0.04

-0.05

1

smaller value of the damping constant Figure 4.12
leads to underdamped motion, and any
higher value leads to overdamped motion.•

General Discussion of Damped, Unforced Motion

We now give a general discussion of differential equation 4.23, clearly delineating values
of the parameters M , k, and β that lead to underdamped, critically damped, and over-
damped motion. The auxiliary equation associated with

M
d2x

dt2
+ β

dx

dt
+ kx = 0 (4.23)

is the quadratic equation

Mm2 + βm + k = 0, (4.24a)

with solutions

m =
−β ±

√
β2 − 4kM

2M
. (4.24b)

Clearly there are three possibilities depending on the value of β2 − 4kM .

Underdamped Motion β2 − 4kM < 0

When β2 − 4kM < 0, roots 4.24b of the auxiliary equation are complex,

m = − β

2M
±
√

4kM − β2

2M
i, (4.25)

and a general solution of differential equation 4.23 is

x(t) = e−βt/(2M)

[
C1 cos

√
4kM − β2

2M
t + C2 sin

√
4kM − β2

2M
t

]
. (4.26)

If we set ω =

√
4kM − β2

2M
, then

x(t) = e−βt/(2M)(C1 cosωt + C2 sin ωt). (4.27)
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Earlier, we indicated how to express the sine and cosine terms in the form sin (ωt + φ), so
that a simplified expression for underdamped oscillations is

x(t) = Ae−βt/(2M) sin (ωt + φ). (4.28)

The presence of the exponential
e−βt/(2M) before the trigonometric
function indicates that we have
oscillations that gradually die out.
Except possibly for the starting
value and initial slope, a typical
graph of this function is shown in
Figure 4.13. It is contained between

x

t

Ae - t / M(2 )

-

sin t+( )

b

fw

Ae - t / M(2 )b

Ae - t / M(2 )b

the curves x = ±Ae−β/(2M). Motion Figure 4.13
is not periodic, but the time between
successive maxima, or between successive minima, or between successive passes through the
equilibrium position when going in the same direction, are all the same. This is often called
the quasi-period of underdamped motion. It is

2π

ω
=

2π√
4kM − β2

2M

=
2π√

k

M
− β2

4M2

.

Since
2π√
k/M

is the period of the motion when damping is absent, the quasi-period is larger

than this period, but it approaches
2π√
k/M

as β → 0. Correspondingly, damping decreases

the frequency of oscillations. As damping increases and β2/(4M2) approaches k/M , the
quasi-period becomes indefinitely long and oscillations disappear.

Critically Damped Motion β2 − 4kM = 0

This is the limiting case of underdamped motion. Roots 4.24b of the auxiliary equation are
real and equal m = −β/(2M), and a general solution of differential equation 4.23 is

x(t) = (C1 + C2t)e−βt/(2M). (4.29)

Damping is so large that oscillations are eliminated and the mass returns from its initial
position to the equilibrium position passing through the equilibrium position at most once.
This situation forms the division between underdamped motion and overdamped motion
(yet to come). Any increase of β results in overdamped motion and any decrease results
in underdamped oscillations. Except possibly for starting values and initial slopes, typical
graphs of this function are shown in Figure 4.14.

x

t

x

t

Figure 4.14

Overdamped Motion β2 − 4kM > 0

When β2 − 4kM > 0, roots 4.24b of the auxiliary equation are real, distinct and negative.
A general solution of differential equation 4.23 is
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x(t) = C1e
(−β+

√
β2−4kM)t/(2M) + C2e

(−β−
√

β2−4kM)t/(2M). (4.30)

Typical graphs of this function are similar to those in Figure 4.14 for critically damped
motion.

We now consider further examples of these three possibilities.

Example 4.12 A 100-gram mass is suspended vertically from a spring with constant 5 newtons per metre.
The mass is pulled 5 centimetres below its equilibrium position and given velocity 2 metres
per second upward. If, during motion, the mass is acted on by a damping force in newtons
numerically equal to one-twentieth the instantaneous velocity in metres per second, find the
position of the mass at any time.

Solution If we choose x = 0 at the equilibrium position of the mass and x positive upward,
the differential equation for the position x(t) of the mass is

1
10

d2x

dt2
+

1
20

dx

dt
+ 5x = 0, or, 2

d2x

dt2
+

dx

dt
+ 100x = 0,

along with the initial conditions x(0) = −1/20, x′(0) = 2. The auxiliary equation 2m2 +
m + 100 = 0 has solutions

m =
−1±

√
1 − 800
4

=
−1±

√
799i

4
.

Consequently,

x(t) = e−t/4[C1 cos (
√

799t/4) + C2 sin (
√

799t/4)].

The initial conditions require

− 1
20

= C1, 2 = −C1

4
+

√
799C2

4
,

from which C2 = 159
√

799/15980. The position of the mass is therefore given by

x(t) = e−t/4

[
− 1

20
cos

(√
799t
4

)
+

159
√

799
15980

sin

(√
799t
4

)]
m.

Using the technique suggested in Example 4.8, we can rewrite the displacement in the form

x(t) = Ae−t/4 sin

(√
799t
4

+ φ

)
,

where

A =

√√√√
(
− 1

20

)2

+

(
159

√
799

15980

)2

≈ 0.285661.

The graph of these underdamped
oscillations is shown in Figure 4.15.
Oscillations are bounded by the
curves x = ±0.285661e−t/4, shown
dotted.•
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Figure 4.15
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Example 4.13 A 4-kilogram mass is attached to a horizontal spring. The mass moves on a frictionless
surface, but a dashpot creates a damping force in newtons equal to ten times the velocity
of the mass. What spring constant leads to critically damped motion?

Solution Critically damped motion results when spring constant k, mass M = 4, and
damping factor β = 10 are related by β2 − 4kM = 0; that is, 100− 4k(4) = 0. This implies
that k = 25/4 N/m.•

Example 4.14 A 2-kilogram mass is suspended vertically from a spring with constant 500 newtons per
metre. The mass is pulled 10 centimetres below its equilibrium position and given velocity
5 metres per second downward. A dashpot is attached to the mass creating a damping force
in newtons numerically equal to one hundred times the instantaneous velocity in metres per
second. Show that motion of the mass is overdamped and that in 1 second the mass is
within 1 millimetre of its equilibrium position.

Solution If we choose x = 0 at the equilibrium position of the mass and x positive upward,
the initial-value problem for the position x(t) of the mass is

2
d2x

dt2
+ 100

dx

dt
+ 500x = 0, x(0) = − 1

10
, x′(0) = −5.

The auxiliary equation 2m2 + 100m + 500 = 2(m2 + 50m + 250) = 0 has solutions

m =
−50±

√
2500− 1000
2

= −25± 5
√

15.

With real roots, motion is overdamped and the position function is of the form

x(t) = C1e
(−25+5

√
15)t + C2e

(−25−5
√

15)t.

The initial conditions require

− 1
10

= C1 + C2, −5 = (−25 + 5
√

15)C1 − (25 + 5
√

15)C2.

These can be solved for

C1 = −
√

15 + 1
20

, C2 =
√

15− 1
20

.

The position of the mass is therefore given by

x(t) = −

(√
15 + 1
20

)
e(−25+5

√
15)t +

(√
15− 1
20

)
e(−25−5

√
15)t m.

If we set t = 1, we obtain the position of the mass after one second,

x(1) = −

(√
15 + 1
20

)
e(−25+5

√
15) +

(√
15 + 1
20

)
e(−25−5

√
15) = −0.000870 m;

that is, the mass is 0.87 millimetres from the equilibrium position.•

Vibrating Mass-Spring Systems With External Forces

So far in this section we have considered mass-spring systems with damping forces, and in
the case of vertical oscillations, gravity is also a consideration. With only these forces, the
differential equation describing motion is homogeneous. Problems become more interesting,
and more widely applicable, when other forces are taken into consideration. In particular,
periodic forcing functions lead to resonance.

When all other forces acting on the mass in a damped mass-spring system are grouped
together into one term denoted by F (t), the differential equation describing motion is
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M
d2x

dt2
+ β

dx

dt
+ kx = F (t). (4.31)

We consider various possibilities for F (t). To begin with, you may have noticed that in every
example of masses sliding along horizontal surfaces (Figure 4.16), we have ignored friction
between the mass and the surface. Suppose we now take it into account. If the coefficient of
kinetic friction between the mass and surface is µ, then the force of friction retarding motion
has magnitude µMg where g > 0 is the acceleration due to gravity. Entering this force into
differential equation 4.31 for all time is a problem due to the difficulty in specifying the
direction of the force. Certainly we can say that friction is always in a direction opposite
to velocity, and we can represent it in the form −µMg

v

|v|
, but entering this into equation

4.31 destroys linearity of the equation. The quotient −v/|v| has values ±1 depending on
whether v is negative or positive; it determines the direction of the frictional force. When
v is positive, friction is negative (to the left), and when v is negative, friction is positive (to
the right). What this means is that each time the mass changes direction, the differential
equation must be reconstituted with the appropriate sign attached to µMg. The following
example is an illustration.

Spring

Mass

Dashpot

Figure 4.16

Example 4.15 A 1-kilogram mass, attached to a spring with constant 16 newtons per metre, slides hori-
zontally along a surface where the coefficient of kinetic friction between surface and mass is
µ = 1/10. Motion is initiated by pulling the mass 10 centimetres to the right of its equilib-
rium position and giving it velocity 1 metre per second to the left. If any damping forces
are negligible, find the point where the mass comes to an instantaneous stop for the second
time.

Solution While the mass is travelling to the left for the first time, the force of friction is
to the right, and therefore the initial-value problem for its position during this time is

d2x

dt2
+ 16x =

(
1
10

)
(1)g, x(0) =

1
10

, x′(0) = −1,

where g = 9.81. Since the auxiliary equation m2 + 16 = 0 has roots m = ±4i, a general
solution of the associated homogeneous differential equation is xh(t) = C1 cos 4t + C2 sin 4t.
It is easy to spot that a particular solution of the nonhomogeneous equation is xp(t) = g/160,
and therefore a general solution of the nonhomogeneous differential equation is

x(t) = C1 cos 4t + C2 sin 4t +
g

160
.

The initial conditions require

1
10

= C1 +
g

160
, −1 = 4C2.

Hence,

x(t) =
(

1
10

− g

160

)
cos 4t − 1

4
sin 4t +

g

160
m.
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This represents the position of the mass only while it is travelling to the left for the first
time. To determine the time and place at which the mass stops moving to the left, we set
the velocity equal to zero,

0 =
dx

dt
= −4

(
1
10

− g

160

)
sin 4t − cos 4t.

This equation can be simplified to

tan 4t =
40

g − 16
,

solutions of which are

t =
1
4

Tan−1

(
40

g − 16

)
+

nπ

4
,

where n is an integer. The only acceptable solution is the smallest positive one, and
this occurs for n = 1, giving t = 0.431082 s. The position of the mass at this time is
x(0.431082) = −0.191663 m. The mass will move from this position if the spring force is
sufficient to overcome the force of static friction. Let us suppose that the coefficient of static
friction is µs = 1/5. This means that the smallest force necessary for the mass to move has
magnitude (1/5)(1)(9.81) = 1.962 N. Since the spring force at the first stopping position is
0.191663(16) = 3.06661 N, it is more than enough to overcome the force of static friction.

For the return trip to the right, friction is to the left, and therefore the initial-value
problem for position is

d2x

dt2
+ 16x = − g

10
, x(0) = −0.191663, x′(0) = 0.

For simplicity, we have reinitialized time t = 0 to commencement of motion to the right
(see Exercise 47 for the analysis without reinitializing time). A general solution of this
differential equation is

x(t) = C3 cos 4t + C4 sin 4t − g

160
.

The initial conditions require

−0.191663 = C3 −
g

160
, 0 = 4C4.

Thus,

x(t) =
( g

160
− 0.191663

)
cos 4t − g

160
m.

The mass comes to rest when

0 =
dx

dt
= −4

( g

160
− 0.191663

)
sin 4t,

solutions of which are given by t = nπ/4 where n is an integer. The smallest positive value
is t = π/4 and the position of the mass at this time is

x(π/4) =
( g

160
− 0.191663

)
cosπ − g

160
= 0.069038 m;

that is, the mass is 6.9 cm to the right of the equilibrium position. The spring force is still
sufficient to overcome the force of friction and the mass will again move to the left.•

Periodic Forcing Functions and Resonance

We now consider the application of periodic forcing functions to masses on the ends of
springs. When an external force F sinωt, where F > 0 and ω > 0 are constants, acts on the
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mass in a mass-spring system, differential equation 4.31 describing motion becomes

M
d2x

dt2
+ β

dx

dt
+ kx = F sin ωt. (4.32)

We begin discussions with systems that have no damping, somewhat unrealistic perhaps,
but essential ideas are not obscured by intensive calculations. The next example introduces
the general discussion to follow.

Example 4.16 A 2-kilogram mass is suspended from a spring with constant 128 newtons per metre. It is
pulled 4 centimetres above its equilibrium position and released. An external force 3 sinωt
newtons acts on the mass during its motion. If damping is negligible, find the position of
the mass as a function of time.

Solution The initial-value problem for position of the mass is

2
d2x

dt2
+ 128x = 3 sinωt, x(0) = 1/25, x′(0) = 0.

Because the auxiliary equation 2m2+128 = 0 has solutions m = ±8i, a general solution of the
associated homogeneous differential equation is xh(t) = C1 cos 8t + C2 sin 8t. Undetermined
coefficients suggests a particular solution of the form xp(t) = A sin ωt+B cosωt. Substitution
into the differential equation leads to xp(t) = [3/(128−2ω2)] sinωt. Thus, a general solution
of the nonhomogeneous differential equation is

x(t) = C1 cos 8t + C2 sin 8t +
3

128− 2ω2
sin ωt.

The initial conditions require

1
25

= C1, 0 = 8C2 +
3ω

128− 2ω2
.

Thus, the position of the mass at any time is

x(t) =
1
25

cos 8t +
3ω

16(ω2 − 64)
sin 8t +

3
2(64− ω2)

sin ωt m.

But if ω = 8 the last two terms have vanishing denominators. We should have made
allowances for this when determining the particular solution. When ω = 8, the right side of
the differential equation is a part of xh(t), and therefore we should take xp(t) = t(A sin 8t +
B cos 8t). Substitution into the differential equation leads to xp(t) = −(3t/32) cos8t, and
therefore a general solution of the differential equation with nonhomogeneity 3 sin 8t is

x(t) = C1 cos 8t + C2 sin 8t − 3t

32
cos 8t.

The initial conditions require

1
25

= C1, 0 = 8C2 −
3
32

.

The position of the mass when the forcing function is 3 sin 8t is

x(t) =
1
25

cos 8t +
3

256
sin 8t − 3t

32
cos 8t m.
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A graph of this function is shown
in Figure 4.17. The last term in the
solution has led to oscillations that
become unbounded. This is a direct
result of the fact that when ω = 8, the
frequency of the forcing term is equal
to the frequency at which the system
would oscillate were no forcing term pre-
sent (the so-called natural frequency

x

t

0.2

-0.2

2 4

of the system). (Think of this as similar Figure 4.17
to a parent pushing a child on a swing.
Every other time the swing begins its downward motion, the parent applies a force, resulting
in the child going higher and higher. The parent applies the force at the same frequency as
the motion of the swing.)•

This phenomenon of ever increasing oscillations due to a forcing function with the same
frequency as the natural frequency of the system is known as resonance. Because the
system is undamped, we refer to this as undamped resonance.

Let us discuss resonance for the general undamped mass-spring system. When a peri-
odic force A sin ωt is applied to an undamped mass-spring system, the differential equation
describing motion is

M
d2x

dt2
+ kx = A sin ωt. (4.33)

When ω 6=
√

k/M , the natural frequency of the system and the forcing frequency are
different. A general solution of the differential equation takes the form

x(t) = C1 cos (
√

k/Mt) + C2 sin (
√

k/Mt) +
A

k − Mω2
sin ωt, (4.34)

and there is nothing untoward about oscillations. When ω =
√

k/M , so that the forcing
frequency is identical to the natural frequency of the undamped system, differential equation
4.33 takes the form

M
d2x

dt2
+ kx = A sin (

√
k/Mt), (4.35)

In this case the general solution

x(t) = C1 cos (
√

k/Mt) + C2 sin (
√

k/Mt) − At

2
√

kM
cos (

√
k/Mt) (4.36)

exhibits undamped resonance.
Resonance also occurs in damped systems, but there is a difference; oscillations can

be large depending on the degree of damping and the forcing frequency, but they cannot
become unbounded. Differential equation 4.32 describes motion of a damped mass-spring
system in the presence of a periodic forcing function. Equations 4.26–4.29 define general
solutions of the associated homogeneous equation, and it is clear that none of these solutions
contain the nonhomogeneity A sinωt for any ω. To put it another way, in the presence of
damping, simple harmonic motion is not possible, and therefore the system does not have a
natural frequency. Resonance as found in undamped systems is therefore not possible. For
underdamped motion, however, oscillations can be large, depending on the degree of damping
and the frequency of the applied periodic force, and this is again known as resonance, but
we call it damped resonance. We illustrate in the following example.

Example 4.17 A 1-kilogram mass is at rest, suspended from a spring with constant 65 newtons per metre.
Attached to the mass is a dashpot that creates a damping force equal to twice the velocity
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of the mass whenever the mass is in motion. At time t = 0, a vertical force 3 sin ωt begins to
act on the mass. Find the position function for the mass. For what value of ω are oscillations
largest?

Solution The initial-value problem for the motion of the mass is

d2x

dt2
+ 2

dx

dt
+ 65x = 3 sinωt, x(0) = 0, x′(0) = 0.

The auxiliary equation m2+2m+65 = 0 has solutions m = −1±8i so that a general solution
of the associated homogeneous differential equation is xh(t) = e−t(C1 cos 8t + C2 sin 8t). A
particular solution can be found in the form xp(t) = A sin ωt + B cosωt by undetermined
coefficients. The result is

xp(t) =
3(65− ω2)

(65 − ω2)2 + 4ω2
sin ωt − 6ω

(65 − ω2)2 + 4ω2
cosωt.

A general solution of the nonhomogeneous differential equation is therefore

x(t) = e−t(C1 cos 8t + C2 sin 8t) +
3

(65− ω2)2 + 4ω2

[
(65 − ω2) sin ωt − 2ω cosωt

]
.

The initial conditions require

0 = C1 −
6ω

(65 − ω2)2 + 4ω2
, 0 = −C1 + 8C2 +

3ω(65− ω2)
(65 − ω2)2 + 4ω2

.

These give

C1 =
6ω

(65 − ω2)2 + 4ω2
, C2 =

3ω(ω2 − 63)
8[(65 − ω2)2 + 4ω2]

,

and the position of the mass is therefore

x(t) =
3ωe−t

8[(65− ω2)2 + 4ω2]
[16 cos8t + (ω2 − 63) sin 8t]

+
3

(65− ω2)2 + 4ω2

[
(65 − ω2) sin ωt − 2ω cosωt

]
m.

The terms involving cos 8t and sin 8t are called the transient part of the solution, transient
because the e−t factor effectively eliminates these terms after a long time. The terms
involving sin ωt and cosωt, not being subjected to such a factor, do not diminish in time.
They are called the steady-state part of the solution. In Figure 4.18a we have shown
the transient solution; Figure 4.18b shows the steady-state solution with the specific choice
ω = 4; and Figure 4.18c shows their sum.
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x
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Figure 4.18c

When the forcing frequency is equal to the natural frequency in undamped systems,
resonance in the form of unbounded oscillations occurs. Inspection of the above solution
indicates that for no value of ω can oscillations become unbounded in this damped system.
However, there is a value of ω that makes oscillations largest relative to all other values
of ω. In particular, because the transient part of the solution becomes negligible after a
sufficiently long time, we are interested in maximizing the amplitude of the steady-state
part of the solution. It is the particular solution xp(t). The amplitude of the oscillations
represented by this term is

√[
3(65− ω2)

(65 − ω2)2 + 4ω2

]2
+
[

−6ω

(65 − ω2)2 + 4ω2

]2
=

3√
(65 − ω2)2 + 4ω2

;

that is, the steady-state solution can be expressed in the form

xp(t) =
3√

(65− ω2)2 + 4ω2
sin (ωt + φ)

for some φ. To maximize the amplitude we minimize (65−ω2)2 +4ω2. Setting its derivative
equal to zero gives

0 = 2(65− ω2)(−2ω) + 8ω,

and the only positive solution of this equation is ω = 3
√

7. For this value of ω, the steady-
state solution becomes

xp(t) =
3
16

sin (3
√

7t).

Maximum oscillations have been realized and the system is said to be in damped resonance.
We have shown a graph of this function in Figure 4.19. Compare the scale on the vertical
axis in this figure to that in Figure 4.18b where ω = 4. We have shown a plot of amplitude
versus ω in Figure 4.20.•
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We now give a general discussion of damped resonance. When a damped, vibrating
mass-spring system is subjected to a sinusoidal input F sin ωt, the differential equation
determining displacements of the mass is
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M
d2x

dt2
+ β

dx

dt
+ kx = F sin ωt.

Because we are assuming that the motion is underdamped, a general solution of the associ-
ated homogeneous equation is given by equation 4.26,

xh(t) = e−βt/(2M)

[
C1 cos

√
4kM − β2

2M
t + C2 sin

√
4kM − β2

2M
t

]
.

A particular solution can be obtained with undetermined coefficients, assuming the solution
in the form

xp(t) = B sin ωt + D cosωt.

When we substitute this into the differential equation, we get

M(−ω2B sin ωt − ω2D cosωt) + β(ωB cosωt − ωD sin ωt)
+ k(B sin ωt + D cosωt) = F sinωt.

We now equate coefficients of terms in sinωt and cosωt,

−Mω2B − ωβD + kB = F,

−Mω2D + ωβB + kD = 0.

The solution of these equations is

B =
F (k − Mω2)

(k − Mω2)2 + β2ω2
, D =

−βωF

(k − Mω2)2 + β2ω2
.

Thus,

xp(t) =
F (k − Mω2)

(k − Mω2)2 + β2ω2
sin ωt − βωF

(k − Mω2)2 + β2ω2
cosωt.

A general solution of the differential equation is x(t) = xh(t) + xp(t). We are interested
only in the steady-state part of the solution, namely xp(t). We can write it in the form
xp(t) = A sin (ωt + φ), where the amplitude is given by

A =

√[
F (k − Mω2)

(k − Mω2)2 + β2ω2

]2
+
[

−βωF

(k − Mω2)2 + β2ω2

]2
,

and this simplifies to A =
F√

(k − Mω2)2 + β2ω2
. Thus,

xp(t) =
F√

(k − Mω2)2 + β2ω2
sin (ωt + φ).

The quantity

Q(ω) =
1√

(k − Mω2)2 + β2ω2
(4.37)

is called the gain factor, or just plain gain, with units of metres per newton. It measures
the increase in the amplitude of the motion per newton increase of the applied force. For
instance, if the gain is 0.01, then the amplitude of the oscillations increases by 1 centimetre
for each newton increase of the applied force. It depends on all four physical quantities in
the system, M , k, β, and ω. Our primary interest is in how it depends on ω for fixed M , k,
and β. But it is also of interest to see its dependence on β for fixed values of M , k, and ω.
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Damped resonance occurs when ω is chosen to maximize the amplitude of xp(t). This
occurs when Q(ω) is maximized (since F is fixed), and this means when (k−Mω2)2 +β2ω2

is minimized. Critical values of this function are defined by

0 =
d

dω
[(k − Mω2)2 + β2ω2 = 2(k − Mω2)(−2Mω) + 2β2ω.

The nontrivial solution of this equation is

ω =

√
k

M
− β2

2M2
.

This is the applied frequency for damped resonance. The gain at this frequency is

1√(
k − k +

β2

2M

)2

+ β2

(
k

M
− β2

2M2

) =
1

β

√
k

M
− β2

4M2

.

Notice that as β approaches zero, the frequency at damped resonance approaches
√

k/M ,
the frequency for damped resonance.

Figure 4.21 shows plots of Q(ω)
for four values of β when k = 1
and M = 1. As β approaches zero,
the gain at damped resonance be-
comes very large.
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EXERCISES 4.3

In Exercises 1–12 find a general solution of the differential equation.

1.
d2y

dt2
+

dy

dt
− 6y = 0 2.

d2y

dt2
− 8

dy

dt
+ 16y = 0

3.
d2y

dt2
+ 8

dy

dt
+ 41y = 0 4.

d2y

dt2
+ 2

dy

dt
− 2y = 0

5.
d2y

dt2
− 4

dy

dt
+ 7y = 0 6.

d2y

dt2
+ 24

dy

dt
+ 144y = 0

7. 2y′′ − 16y′ + 32y = −e4t 8. y′′ + 2y′ − 2y = t2e−t

9. y′′ + y′ − 6y = t + cos t 10. y′′ − 4y′ + 5y = t cos t

11. y′′ + 2y′ − 4y = cos2 t 12. 2y′′ − 4y′ + 3y = cos t sin 2t

Undamped, Unforced Vibration Exercises

13. Express the solution in Example 4.8 in the form x(t) = A cos (40t − φ).

14. A 1-kilogram mass is suspended vertically from a spring with constant 16 newtons per metre. The mass
is pulled 10 centimetres below its equilibrium position and then released. Find the position of the mass,
relative to its equilibrium position, at any time if damping is ignored.

15. A 100-gram mass is attached to a spring with constant 100 newtons per metre as in Figure 4.4. The mass
is pulled 5 centimetres to the right and released. Find the position of the mass if damping, and friction
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over the sliding surface, are ignored. Sketch a graph of the position function identifying the amplitude,
period, and frequency of the oscillations.

16. Repeat Exercise 15 if motion is initiated by striking the mass, at equilibrium, so as to impart a velocity
of 3 metres per second to the left.

17. Repeat Exercise 15 if motion is initiated by pulling the mass 5 centimetres to the right and giving it an
initial velocity 3 metres per second to the left.

18. Repeat Exercise 15 if motion is initiated by pulling the mass 5 centimetres to the left and giving it an
initial velocity 3 metres per second to the left.

19. (a) A 2-kilogram mass is suspended from a spring with constant 1000 newtons per metre. If the mass
is pulled 3 centimetres below its equilibrium position and given a downward velocity of 2 metres per
second, find its position thereafter. Sketch a graph of the position function identifying the amplitude,
period, and frequency of the oscillations.

(b) Do the initial displacement and velocity affect the amplitude, period, and/or frequency?

20. If the mass in Exercise 19 is quadrupled, how does this affect the period and frequency of the oscillations?

21. If the spring constant in Exercise 19 is quadrupled, how does this affect the period and frequency of the
oscillations?

22. When a 2-kilogram mass is set into vertical vibrations on the end of a spring, 3 full oscillations occur
each second. What is the spring constant if there is no damping?

23. A mass M is suspended from a spring with constant k. Oscillations are initiated by giving the mass a
displacement x0 and velocity v0. Show that the position of the mass relative to its equilibrium position,
when damping is ignored, can be expressed in the form

x(t) = A sin (
√

k/Mt + φ),

where the amplitude is A =
√

x2
0 + Mv2

0/k, and φ satisfies

sinφ =
x0

A
, cosφ =

√
M/kv0

A
.

24. Use the result of Exercise 23 to show that when the mass on the end of a spring is doubled, the period
increases by a factor of

√
2 and the frequency decreases by a factor of 1/

√
2.

25. Show the following for oscillations of a mass on the end of a spring when damping is ignored:
(a) Maximum velocity occurs when the mass passes through its equilibrium position. What is the accel-

eration at this instant?
(b) Maximum acceleration occurs when the mass is at its maximum distance from equilibrium. What is

the velocity there?

26. When a spring is suspended vertically, its own weight causes it to stretch. Would this have any effect on
our analysis of motion of a mass suspended from the spring?

27. A 100-gram mass is suspended vertically from a spring with constant 40 newtons per metre. The mass is
pulled 2 centimetres below its equilibrium position and given an upward velocity of 10 metres per second.
Determine:
(a) the position of the mass as a function of time
(b) the amplitude, period, and frequency of the oscillations
(c) all times when the mass has velocity zero
(d) all times when the mass passes through the equilibrium position
(e) all times when the mass has velocity 2 metres per second
(f) all times when the mass is 1 centimetre above the equilibrium position
(g) whether the mass ever has velocity 12 metres per second
(h) the second time the mass is at a maximum height above the equilibrium position.
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28. Simple harmonic motion as represented by equation 4.20 can be expressed in alternative forms to 4.21a,
namely, A sin (ωt − φ), A cos (ωt + φ), and A cos (ωt − φ). In each case, formula 4.21b for amplitude A is
unchanged, only equations 4.21c for angle φ change. Show that:
(a) For A sin (ωt − φ),

sinφ = −C1

A
, cosφ =

C2

A
.

(b) For A cos (ωt + φ),

sinφ = −
C2

A
, cosφ =

C1

A
.

(c) For A cos (ωt − φ),

sin φ =
C2

A
, cosφ =

C1

A
.

29. At time t = 0, a mass M is attached to the end of a hanging spring with constant k, and then released.
Assuming that damping is negligible, find the subsequent displacement of the mass as a function of time.

30. (a) A cube L metres on each side and with mass M kilograms floats half submerged in water. If it is
pushed down slightly and then released, oscillations take place. Use Archimedes’ principle to find the
differential equation governing these oscillations. Assume no damping forces due to the viscosity of
the water.

(b) What is the frequency of the oscillations?

31. A cylindrical buoy 20 centimetres in diameter floats partially submerged with its axis vertical. When it
is depressed slightly and released, its oscillations have a period equal to 4 seconds. What is the mass of
the buoy?

32. A sphere of radius R floats half submerged in water. It is set into vibration by pushing it down slightly
and then releasing it. If y denotes the instantaneous distance of its centre below the surface, show that

d2y

dt2
=

−3g

2R3

(
R2y − y3

3

)
,

where g is the acceleration due to gravity. Is this a linear differential equation?

Damped Unforced Vibration Exercises

33. A 1-kilogram mass is suspended vertically from a spring with constant 16 newtons per metre. The mass
is pulled 10 centimetres below its equilibrium position and then released. Find the position of the mass,
relative to its equilibrium position, if a damping force in newtons equal to one-tenth the instantaneous
velocity in metres per second acts on the mass.

34. Repeat Exercise 33 if the damping force is equal to ten times the instantaneous velocity.

35. What damping factor creates critically damped motion for the spring and mass in Exercise 33?

36. A 100-gram mass is suspended vertically from a spring with constant 4000 newtons per metre. The mass
is pulled 2 centimetres above its equilibrium position and given a downward velocity of 4 metres per
second. Find the position of the mass, relative to its equilibrium position, if a dashpot is attached to the
mass so as to create a damping force in newtons equal to forty times the instantaneous velocity in metres
per second. Does the mass ever pass through the equilibrium position?

37. Repeat Exercise 36 if the mass is given a downward velocity of 10 metres per second.

38. (a) A 1-kilogram mass is suspended vertically from a spring with constant 50 newtons per metre. The
mass is pulled 5 centimetres above its equilibrium position and given an upward velocity of 3 metres
per second. Find the position of the mass, relative to its equilibrium position, if a dashpot is attached
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to the mass so as to create a damping force in newtons equal to fifteen times the instantaneous velocity
in metres per second.

(b) Does the mass ever pass through the equilibrium position?
(c) When is the mass 1 centimetre from the equilibrium position?
(d) Sketch a graph of the position function.

39. Repeat Exercise 38 if the initial velocity is 1 metre per second downward.

40. Repeat Exercise 38 if the initial velocity is 3 metres per second downward.

41. (a) A 2-kilogram mass is suspended vertically from a spring with constant 200 newtons per metre. The
mass is pulled 10 centimetres above its equilibrium position and given an upward velocity of 5 metres
per second. Find the position of the mass, relative to its equilibrium position, if a damping force in
newtons equal to four times the instantaneous velocity in metres per second also acts on the mass.

(b) What is the maximum distance the mass attains from equilibrium?
(c) When does the mass first pass through the equilibrium position?

42. (a) A 1-kilogram mass is suspended vertically from a spring with constant 40 newtons per metre. The
mass is pulled 5 centimetres below its equilibrium position and released. Find the position of the
mass, relative to its equilibrium position, if a dashpot is attached to the mass so as to create a
damping force in newtons equal to twice the instantaneous velocity in metres per second. Express
the function in the form Ae−at sin (ωt + φ) for appropriate a, A, ω, and φ.

(b) Show that the length of time between successive passes through the equilibrium position is constant.
What is this time? Twice its value is often called the quasi period for overdamped motion? Is it
the same as the period of the corresponding undamped system?

43. A mass M is suspended from a spring with constant k. Motion is initiated by giving the mass a displace-
ment x0 from equilibrium and a velocity v0. A damping force with constant β > 0 results in overdamped
motion.
(a) Show that if x0 and v0 are both positive or both negative, the mass cannot pass through its equilibrium

position.
(b) When x0 and v0 have opposite signs, it is possible for the mass to pass through the equilibrium

position, but it can do so only once. What condition must x0 and v0 satisfy for this to happen?

44. A weighing platform has weight W and is supported by springs with combined spring constant k. A
package with weight w is dropped on the platform so that the two move together. Find a formula for the
maximum value of w so that oscillations do not occur. Assume that there is damping in the motion with
constant β.

45. Suppose a mass M is attached to a vertical spring with constant k and damping is increased, taking the
system from underdamped motion, through critically damped motion, to overdamped motion. Show that
the rate at which the mass returns to its equilibrium position is fastest for critically damped motion.
Compare rates for underdamped and overdamped motions.

46. A mass M is suspended from a spring with constant k. Oscillations are initiated by giving the mass a
displacement x0 from equilibrium and a velocity v0. A damping force with constant β > 0 results in
underdamped motion.
(a) Show that the position of the mass relative to its equilibrium position can be expressed in the form

x(t) = Ae−βt/(2M) sin

(√
4kM − β2

2M
t + φ

)
,

where A and φ are constants.
(b) Show that the length of time between successive passes through the equilibrium position is constant.

What is this time?
(c) Let t1, t2, . . ., be the times at which the velocity of the mass is equal to zero (and therefore the times

at which x(t) has relative maxima and minima. If x1, x2, . . ., are the corresponding values of x(t),
show that the ratio
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xn

xn+2
= e2πβ/

√
4kM−β2

,

is a constant independent of n. The quantity 2πβ/
√

4kM − β2 is called the
logarithmic decrement.

Forced Vibration Exercises

47. Repeat Example 4.15 without reinitializing time for movement to the right.

48. A 0.5-kilogram mass sits on a table attached to a spring with constant 18 newtons per metre (Figure
4.16). The mass is pulled so as to stretch the spring 6 centimetres and then released.
(a) If friction between the mass and the table creates a force of 0.5 newtons that opposes motion, but

damping is negligible, show that the differential equation determining motion is

d2x

dt2
+ 36x = 1, x(0) = 0.06, x′(0) = 0.

Assume that the coefficient of static friction is twice the coefficient of kinetic friction.
(b) Find where the mass comes to rest for the first time. Will it move from this position?

49. Repeat Exercise 48 given that the mass is pulled 25 centimetres to the right.

50. A 200-gram mass rests on a table attached to an unstretched spring with constant 5 newtons per metre.
The mass is given a velocity of 1/2 metre per second to the right. During the subsequent motion, the
coefficient of kinetic friction between mass and table is µk = 1/4, but damping is negligible. Where does
the mass come to a complete stop? Assume that the coefficient of static friction is µs = 1/2.

51. Repeat Exercise 50 if the initial velocity is 2 metres per second.

52. A 100-gram mass is suspended from a spring with constant 4000 newtons per metre. At its equilibrium
position, it is suddenly (time t = 0) given an upward velocity of 10 metres per second. If an external force
3 cos 100t, t ≥ 0 acts on the mass, find its displacement as a function of time. Does resonance occur?

53. Repeat Exercise 52 if the external force is 3 cos 200t.

54. A vertical spring having constant 64 newtons per metre has a 1-kilogram mass attached to it. An external
force 2 sin 4t, t ≥ 0 is applied to the mass. If the mass is at rest at its equilibrium position at time t = 0,
and damping is negligible, find the position of the mass as a function of time. Does resonance occur?

55. Repeat Exercise 54 if the external force is 2 sin 8t.

56. A mass M is suspended from a vertical spring with constant k. If an external force F (t) = A cosωt is
applied to the mass for t > 0, find the value of ω that causes resonance.

57. A 200-gram mass suspended vertically from a spring with constant 10 newtons per metre is set into
vibration by an external force in newtons given by 4 sin 10t, t ≥ 0. During the motion a damping force
in newtons equal to 3/2 the velocity on the mass in metres per second acts on the mass. Find the position
of the mass as a function of time t.

58. (a) A 1-kilogram mass is motionless, suspended from a spring with constant 100 newtons per metre. A
vertical force 2 sinωt acts on the mass beginning at time t = 0. Oscillations are subject to a damping
force in newtons equal to twice the velocity in metres per second. Find the position of the mass as a
function of time.

(b) What value of ω causes resonance? What is the amplitude of steady-state oscillations for resonance?

59. A mass M is suspended from a spring with constant k. Vertical motion is initiated by an external force
A cosωt where A is a positive constant. During the subsequent motion a damping force acts on the mass
with damping coefficient β.
(a) Show that the steady-state part of the solution is
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xp(t) =
A(k − Mω2)

(k − Mω2)2 + β2ω2
cosωt − Aωβ

(k − Mω2)2 + β2ω2
sinωt.

(b) Find the value of ω that gives resonance and the resulting amplitude of oscillations.

60. A battery of springs is placed between two sheets of wood, and the structure is placed on a level floor.
Equivalent to the springs is a single spring with constant 1000 newtons per metre. A 20 kilogram mass
is dropped onto the upper platform, hitting the platform with speed 2 metres per second, and remains
attached to the platform thereafter.
(a) Find the position of the mass relative to where it strikes the platform as a function of time. Assume

that air drag is 10 times the velocity of the mass.
(b) What is the maximum displacement from where it strikes the platform experienced by the mass?

61. A mass M , attached to a spring with constant k, rests on a horizontal table. At time t = 0 it is pulled
to the right a distance x0 and given velocity v0 to the right. If damping is ignored, but the coefficient
of kinetic friction between table and mass is µ, find a formula for the time when the mass comes to an
instantaneous stop for the first time.

62. Repeat Exercise 61 if the initial velocity is to the left.

63. A cube 1 metre on each side and with density 1200 kilograms per cubic metre is placed with one of its
faces in the surface of a body of water. When the cube is released from this position and sinks, it is acted
upon by three forces, gravity, a buoyant force equal to the weight of water displaced by the submerged
portion of the cube (Archimedes’ principle), and a resistive force equal to twice the speed of the object.
Find the depth of the bottom surface of the cube as a function of time from the instant the cube is
released until it is completely submerged. Plot a graph of the function.

64. A cube 1 metre on each side and with density 500 kilograms per cubic metre is placed with one of its
faces in the surface of a body of water. When the cube is released from this position and sinks, it is acted
upon by three forces, gravity, a buoyant force equal to the weight of water displaced by the submerged
portion of the cube (Archimedes’ principle), and a resistive force equal to twice the speed of the object.
Find the depth of the bottom surface of the cube as a function of time. Plot a graph of the function.

65. A cable hangs over a peg, 10 metres on one side and 15 metres on the other. Find the time for it to slide
off the peg
(a) if friction at the peg is negligible.
(b) if friction at the peg is equal to the weight of 1 metre of cable.
Answers

1. y = C1e
−3t + C2e

2t 2. y = (C1 + C2t)e4t 3. y = e−4t(C1 cos 5t + C2 sin 5t)
4. y = C1e

(−1+
√

3)t + C2e
−(1+

√
3)t 5. y = e−2t(C1 cos

√
3t + C2 sin

√
3t) 6. y = (C1 + C2t)e−12t

7. y = (C1 + C2t)e4t − t2

4
e4t 8. y = C1e

−(1+
√

3)t + C2e
(−1+

√
3)t − 1

9
(3t2 + 2)e−t

9. y = C1e
−3t + C2e

2t − 1
36

(6t + 1) +
1
50

(sin t − 7 cos t)

10. y = e2t(C1 cos t + C2 sin t) +
t

8
(cos t − sin t) +

1
16

(cos t − 2 sin t)

11. y = C1e
−(1+

√
5)t + C2e

(−1+
√

5)t − 1
8

+
1
40

(sin 2t − 2 cos 2t)

12. y = et

(
C1 cos

t√
2

+ C2 sin
t√
2

)
+

1
246

(4 cos 3t − 5 sin 3t) +
1
34

(4 cos t + sin t)

13.

√
5

20
cos (40t + 0.464) 14. − 1

10
cos 4t m

15.
1
20

cos 10
√

10t m, amplitude = 5 cm, period =
√

10π
50

s, frequency =
5
√

10
π

Hz

16. −3
√

10
100

sin 10
√

10t m, amplitude =
3
√

10
100

m, period =
√

10π
50

s, frequency =
5
√

10
π

Hz
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17.
1
20

cos 10
√

10t − 3
√

10
100

sin 10
√

10t m, amplitude =
√

115
100

m, period =
√

10π
50

s,

frequency =
5
√

10
π

Hz

18. − 1
20

cos 10
√

10t − 3
√

10
100

sin 10
√

10t m, amplitude =
√

115
100

m, period =
√

10π
50

s,

frequency =
5
√

10
π

Hz

19.(a) − 3
100

cos 10
√

5t −
√

5
25

sin 10
√

5t m, amplitude =
√

89
100

m, period =
√

5π
25

s,

frequency =
5
√

5
π

Hz (b) Amplitude, but not period or frequency

20. Period doubled, frequency halved 21. Period halved, frequency doubled 22. 72π2 N/m
26. No

27.(a) − 1
50

cos 20t +
1
2

sin 20t m (b) amplitude =
√

626
50

m, period =
π

10
s, frequency =

10
π

Hz

(c)
(2n + 1)π

40
+

1
20

Sin−1

(
1√
626

)
s, n ≥ 0 (d)

nπ

20
+

1
20

Sin−1

(
1√
626

)
s, n ≥ 0

(e)
(2n + 1)π

40
+

1
20

Cos−1

(
5√
626

)
+

1
20

Sin−1

(
1√
626

)
s, n ≥ 0

(f)
nπ

20
+

1
20

Sin−1

(
1

2
√

626

)
s,

(2n + 1)π
20

− 1
20

Sin−1

(
1

2
√

626

)
s, n ≥ 0 (g) No

(h)
7π

40
+

1
20

Sin−1

(
1√
626

)
s

29. −Mg

k
cos

√
k

M
t m 30.

0.705√
L

Hz 31. 124.9ρ kg, where ρ is the density of the buoy

32. No 33. e−t/20

(
− 1

10
cos

9
√

79t
20

−
√

79
7110

sin
9
√

79t

20

)
m 34.

1
30

(e−8t − 4e−2t) m 35. β = 8

36.
1
50

e−200t m, No 37.
(

1
50

− 6t

)
e−200t m, t = 1/300 s

38.(a)
1
20

(14e−5t − 13e−10t) m (b) No (c) t =
1
5

ln (35 + 2
√

290) s

39.(a)
1
20

(3e−10t − 2e−5t) m (b) t =
1
5

ln (3/2) s (c) t =
1
5

ln (2
√

10− 5) s

40.(a)
1
20

(11e−10t − 10e−5t) m (b) t =
1
5

ln (11/10) s (c) t =
1
5

ln (2
√

170− 25) s

41.
1

110
e−t(11 cos 3

√
11t + 17

√
11 sin 3

√
11t) m (b) 45.7 cm (c) 0.296 s

42.(a)
1√
390

sin (
√

39t − 1.73) m (b) π/
√

39 43.(b)
v0

x0
+

β

2M
< 0 44.

β2g

4k
− W

46.(b)
2Mπ√

4kM − β2
48.(b) −1/25 m, No 49.(b) −7/36 m, Yes 50. x = 4.20 cm

51. x = −11.8 cm 52. − 1
1000

cos 200t +
1
20

sin 200t +
1

1000
cos 100t m, No

53.
(

1
20

+
3t

40

)
sin 200t m, Yes 54.

1
24

sin 4t − 1
48

sin 8t m, No

55.
1
64

sin 8t − t

8
cos 8t m, Yes 56.

√
k

M

57. e−15t/4

[
12
65

cos
5
√

23t
4

+
20

13
√

23
sin

5
√

23t
4

]
− 4

65
(3 cos 10t + 2 sin 10t) m

58.(a)
1

(100− ω2)2 + 4ω2

{
e−t

[
[4ω cos (3

√
11t) +

2
√

11ω(ω2 − 98)
33

sin (3
√

11t)
]
+
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[2(100− ω2) sin ωt − 4ω cosωt]
}

(b) ω = 7
√

2, Amplitude =
√

11
33

59.

√
k

M
− β2

2M2
,

2AM

β
√

4kM − β2

60.(a) e−t/4

[
− g

50
cos

√
799t
4

+
(

400− g

50
√

799

)
sin

√
799t
4

]
+ g/50 (b)0.51 m

61.

√
M

k
Tan−1

(
v0

√
M/k

x0 + µMg/k

)

62. t =





√
M

k
Tan−1

(
v0

√
M/k

x0 − µMg/k

)
, when x0 < µMg/k

√
M

k

π

2
, when x0 = µMg/k

√
M

k

[
Tan−1

(
v0

√
M/k

x0 − µMg/k

)
+ π

]
, when x0 > µMg/k.

63. 6/5− e−t/1200

1000ω
(1200ω cosωt + sin ωt), ω =

√
1 199 999/1200

64. 1/2− e−t/500

1000ω
(500ω cosωt + sin ωt), ω =

√
499 999/500

65. (a) 2.59 s (b) 2.80 s
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§4.4 Systems of Linear Second-order Differential Equations

In this section, we show how linear algebra can simplify the solution of systems of coupled,
linear, second-order, homogeneous, differential equations with constant coefficients. Figure
4.22 shows two masses connected by springs. Following the lead of Section 4.3, we use
x1(t) and x2(t) to denote distances of the masses from their equilibrium positions when the
springs are neither stretched nor compressed. To find the differential equations determining
motions of the masses, suppose that the masses are at positions x1 and x2 relative to their
equilibrium positions as shown in Figure 4.22. Both springs act on M1. Since the stretch
(or compression) in the left spring is x1, this spring exerts a force −k1x1 on M1. The stretch
(or compression) in the right spring is represented by the difference x2 −x1. For example, if
M2 is more to the right of its equilibrium position than M1, then x2 − x1 > 0, resulting in
a stretch of the right spring; whereas if M1 is more to the right of its equilibrium position
than M2, then x2 − x1 < 0, resulting in a compresion of the right spring. Thus, the force
of the right spring on M1 is k2(x2 − x1). If we assume, for the moment, that the masses
move along a frictionless surface and damping is negligible, Newton’s second law for mass
M1 gives

M1
d2x1

dt2
= −k1x1 + k2(x2 − x1). (4.38a)

The only force on M2 is the right spring, and this force is the same as that due to this spring
on M1, except for direction,

M2
d2x2

dt2
= −k2(x2 − x1). (4.38b)

k k

M M

x
x

M

1

1

1
1

1Position of
when springs
unstretched

2

2

= 0
x

x
M

2
2

2Position of
when springs
unstretched

= 0

Figure 4.22

In equations 4.38a,b we have a coupled system of linear differential equations for x1(t) and
x2(t). In a differential equations course, these would be solved using operators, Laplace
transforms, and/or matrices. In the operator approach, the equations are decoupled but
the result is a fourth-order equation in either x1(t) or x2(t). Laplace transforms do not
decouple the equations; the transform replaces the system of differential equations with a
system of algebraic equations in the transforms of x1(t) and x2(t). In the matrix method,
two additional variables are introduced x3 = dx1/dt and x4 = dx2/dt, (the velocities of the
masses). Second-order system 4.38 is replaced by the first-order system

dx1

dt
= x3,

dx2

dt
= x4,

(4.39)dx3

dt
= −

(
k1 + k2

M1

)
x1 +

k2

M1
x2,

dx4

dt
=

k2

M2
x1 −

k2

m2
x2.
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In matrix form, we have

d

dt




x1

x2

x3

x4


 =




0 0 1 0
0 0 0 1

−(k1 + k2)/M1 k2/M1 0 0
k2/M2 −k2/M2 0 0







x1

x2

x3

x4


 .

Eigenvalues and eigenvectors of the coefficient matrix yield solutions of this vector differential
equation, and components then give solutions of the scalar equations. We use eigenpairs in
a fundamentally different way here to decouple the differential equations. We can decouple
equations 4.38 into second-order differential equations, or we can decouple equations 4.39
into first-order equations. The first option is less work. We illustrate in the following
example, where physical constants are somewhat unrealistic, but we have chosen them so
that ideas are not obscured by messy calculations.

Example 4.18 Suppose the masses in Figure 4.22 are both one kilogram, and spring constants are k1 = 6
newtons per metre and k2 = 4 newtons per metre. Suppose further that motion is initiated
at time t = 0 by stretching the left spring 10 centimetres and compressing the right spring
10 centimetres. Find positions of the masses relative to their equilibrium positions.

Solution Equations 4.38a,b become

d2x1

dt2
= −10x1 + 4x2,

d2x2

dt2
= 4x1 − 4x2.

Initially, the left spring is stretched 10 cm so that x1(0) = 1/10. For the right spring to be
compressed 10 cm when the left spring is stretched 10 cm, the initial position of M2 must be
20 cm to the left of its equilibrium position, x2(0) = −1/5. Because the masses are released
from these positions, they have zero initial velocities, and we adjoin the following initial
conditions to complete the system,

x1(0) =
1
10

, x′
1(0) = 0, x2(0) = −1

5
, x′

2(0) = 0.

In matrix form,

d2

dt2

(
x1

x2

)
=
(
−10 4
4 −4

)(
x1

x2

)
.

Eigenvalues of the matrix are given by

0 = det
(
−10 − λ 4

4 −4 − λ

)
= (λ + 10)(λ + 2) − 16 = (λ + 2)(λ + 12).

Eigenvalues are λ1 = −2 and λ2 = −12 with corresponding eigenvectors v1 =
(

1
2

)
and

v2 =
(
−2
1

)
. If q1(t) and q2(t) are components of x(t) with respect to the eigenvector basis,

so that x(t) = q1(t)v1 + q2(t)v2, then

d2

dt2

(
q1

q2

)
=
(
−2 0
0 −12

)(
q1

q2

)
.

Equating entries gives the system of differential equations

d2q1

dt2
= −2q1,

d2q2

dt2
= −12q2.

The eigenvalue basis has decoupled the system into linear second-order differential equations
in q1(t) and q2(t). Solutions of these are
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q1(t) = C1 cos
√

2t + C2 sin
√

2t, q2(t) = C3 cos 2
√

3t + C4 sin 2
√

3t,

where C1, C2, C3, and C4 are constants. To evaluate them, we can transform the initial
conditions to the eigenvector basis, or return to the natural basis. We prefer the latter, by
writing

x(t) = q1(t)v1 + q2(t)v2 = (C1 cos
√

2t + C2 sin
√

2t)
(

1
2

)
+ (C3 cos 2

√
3t + C4 sin 2

√
3t)
(
−2
1

)
.

When we equate components,

x1(t) = C1 cos
√

2t + C2 sin
√

2t − 2C3 cos 2
√

3t − 2C4 sin 2
√

3t,

x2(t) = 2C1 cos
√

2t + 2C2 sin
√

2t + C3 cos 2
√

3t + C4 sin 2
√

3t.

The initial conditions require

1
10

= C1 − 2C3, 0 =
√

2C2 − 4
√

3C4, −1
5

= 2C1 + C3, 0 = 2
√

2C2 + 2
√

3C4.

The solution is C1 = −3/50, C3 = −2/25, and C2 = C4 = 0. Thus,

x1(t) = − 3
50

cos
√

2t +
4
25

cos 2
√

3t, x2(t) = − 3
25

cos 2
√

3t − 2
25

cos 2
√

3t.•

In the next example, spring constants are more realistic, with the result that calculations
are more intensive.

Example 4.19 Suppose the masses in Figure 4.22 are M1 = 1 and M2 = 2 kilograms, and spring constants
are k1 = 100 and k2 = 500 newtons per metre. Motion is initiated at time t = 0 by stretching
the left spring 2 centimetres and compressing the right spring 4 centimetres. Find positions
of the masses relative to their equilibrium positions.

Solution Equations 4.38a,b for displacements of the masses are

d2x1

dt2
= −600x1 + 500x2, 2

d2x2

dt2
= 500x1 − 500x2.

Initial conditions are

x1(0) =
1
50

, x′
1(0) = 0, x2(0) = − 1

50
, x′

2(0) = 0.

In matrix form,

d2

dt2

(
x1

x2

)
=
(
−600 500
250 −250

)(
x1

x2

)
.

Eigenvalues, as defined by,

0 = det
(
−600− λ 500

250 −250− λ

)
= λ2 + 850λ + 25 000,

are λ1 = −425 + 25
√

249 and λ2 = −425− 25
√

249. Corresponding eigenvectors are

v1 =
(√

249− 7
10

)
, v2 =

(√
249 + 7
−10

)
.

If q1(t) and q2(t) are components of x(t) with respect to the eigenvector basis, so that
x(t) = q1(t)v1 + q2(t)v2, then

d2

dt2

(
q1

q2

)
=
(
−425 + 25

√
249 0

0 −425− 25
√

249

)(
q1

q2

)
.

Equating entries gives the system of differential equations
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d2q1

dt2
= (−425 + 25

√
249)q1,

d2q2

dt2
= −(425 + 25

√
249)q2.

The eigenvalue basis has decoupled the system into linear second-order differential equations
in q1(t) and q2(t). Solutions of these are

q1(t) = C1 cosω1t + C2 sin ω1t, q2(t) = C3 cosω2t + C4 sinω2t,

where ω1 = 5
√

17−
√

249 and ω2 = 5
√

17 +
√

249. To evaluate the constants C1, C2, C3,
and C4, we can transform the initial conditions to the eigenvector basis, or return to the
natural basis. We prefer the latter, by writing

x(t) = q1(t)v1 + q2(t)v2

= (C1 cosω1t + C2 sin ω1t)
(√

249− 7
10

)
+ (C3 cosω2t + C4 sinω2t)

(√
249 + 7
−10

)
.

When we equate components,

x1(t) = (
√

249− 7)(C1 cosω1t + C2 sin ω1t) + (
√

249 + 7)(C3 cosω2t + C4 sin ω2t),
x2(t) = 10(C1 cosω1t + C2 sin ω1t) − 10(C3 cosω2t + C4 sin ω2t).

The initial conditions require

1
50

= (
√

249− 7)C1 + (
√

249 + 7)C3, 0 = (
√

249− 7)ω1C2 + (
√

249 + 7)ω2C4,

− 1
50

= 10C1 − 10C3, 0 = 10ω1C2 − 10ω2C4.

The solution is C1 = (3−
√

249)/(1000
√

249), C3 = (3+
√

249)/(1000
√

249), and C2 = C4 =
0. Thus,

x1(t) = (
√

249− 7)

(
3 −

√
249

1000
√

249

)
cosω1t + (

√
249 + 7)

(
3 +

√
249

1000
√

249

)
cosω2t,

=

(√
249− 27

100
√

249

)
cosω1t +

(√
249 + 27

100
√

249

)
cosω2t, m

x2(t) =

(
3 −

√
249

100
√

249

)
cosω1t −

(
3 +

√
249

100
√

249

)
cosω2t m.•

We have plotted these functions in Figure 4.23. Motion does not appear to be periodic.

x

t

1

1 2

0.02

-0.02

x

t1

2

20.02

-0.02

Figure 4.23a Figure 4.23b

We now add damping to the system in Example 4.18.

Example 4.20 Solve Example 4.18 if each mass is subject to damping equal in magnitude to the velocity
of the mass.

Solution With damping taken into account, differential equations for displacements of
the masses become
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d2x1

dt2
= −10x1 + 4x2 −

dx1

dt
,

d2x2

dt2
= 4x1 − 4x2 −

dx2

dt
.

Initial conditions remain the same

x1(0) =
1
10

, x′
1(0) = 0, x2(0) = −1

5
, x′

2(0) = 0.

In matrix form,

d2

dt2

(
x1

x2

)
+

d

dt

(
x1

x2

)
=
(
−10 4
4 −4

)(
x1

x2

)
.

Eigenvalues of the matrix remain λ1 = −2 and λ2 = −12 with corresponding eigenvectors

v1 =
(

1
2

)
and v2 =

(
−2
1

)
. If q1(t) and q2(t) are components of x(t) with respect to the

eigenvector basis, so that x(t) = q1(t)v1 + q2(t)v2, then

d2

dt2

(
q1

q2

)
+

d

dt

(
q1

q2

)
=
(
−2 0
0 −12

)(
q1

q2

)
.

Equating entries gives the system of differential equations

d2q1

dt2
+

dq1

dt
= −2q1,

d2q2

dt2
+

dq2

dt
= −12q2.

Solutions of these are

q1(t) = e−t/2

(
C1 cos

√
7t

2
+ C2 sin

√
7t

2

)
, q2(t) = e−t/2

(
C3 cos

√
47t
2

+ C4 sin
√

47t
2

)
,

where C1, C2, C3, and C4 are constants. To evaluate them, we can transform the initial
conditions to the eigenvector basis, or return to the natural basis. We prefer the latter, by
writing

x(t) = q1(t)v1 + q2(t)v2 = e−t/2

(
C1 cos

√
7t
2

+ C2 sin
√

7t

2

)(
1
2

)

+ e−t/2

(
C3 cos

√
47t
2

+ C4 sin
√

47t
2

)(
−2
1

)
.

When we equate components,

x1(t) = e−t/2

(
C1 cos

√
7t

2
+ C2 sin

√
7t

2

)
− 2e−t/2

(
C3 cos

√
47t

2
+ C4 sin

√
47t
2

)
,

x2(t) = 2e−t/2

(
C1 cos

√
7t
2

+ C2 sin
√

7t
2

)
+ e−t/2

(
C3 cos

√
47t

2
+ C4 sin

√
47t
2

)
.

The initial conditions require

1
10

= C1 − 2C3, 0 = −C1

2
+

√
7

2
C2 + C3 −

√
47C4,

−1
5

= 2C1 + C3, 0 = −C1 +
√

7C2 −
C3

2
+

√
47
2

C4.

The solution is C1 = −3/50, C2 = −3/(50
√

7), C3 = −2/25, and C4 = −2/(25
√

47). Thus,
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x1(t) = −e−t/2

(
3
50

cos
√

7t
2

+
3

50
√

7
sin

√
7t
2

)
+ 2e−t/2

(
2
25

cos
√

47t
2

+
2

25
√

47
sin

√
47t
2

)
,

x2(t) = −2e−t/2

(
3
50

cos
√

7t

2
+

3
50

√
7

sin
√

7t

2

)
− e−t/2

(
2
25

cos
√

47t
2

+
2

25
√

47
sin

√
47t
2

)
.

In Figure 4.24, we have added a third spring to a system like that in Figure 4.22. We
let x1(t) and x2(t) represent positions of the masses relative to the positions that they would
occupy were they motionless. Once again we would call this the equilibrium position of the
system, but there could be compressions or stretches in the springs. All three are either
stretched or all three are compressed; there cannot be both stretches and compressions. We
begin our analysis by determining the ratios of stretches (or compressions) at equilibrium.
Suppose that s represents the total stretch (or compression) of all three springs at equilib-
rium. If s1, s2, and s3 are the stretches in the springs, then s = s1 + s2 + s3. Since the
masses are motionless, we can say that

0 = −k1s1 + k2s2, 0 = −k2s2 + k3s3. (4.40)

These imply that s1 = k2s2/k1 and s3 = k2s2/k3. If we substitute these into s = s1+s2+s3,
we obtain

s =
k2s2

k1
+ s2 +

k2s2

k3
,

and this can be solved for

s2 =
s

k2/k1 + 1 + k2/k3
=

k1k3s

k1k2 + k2k3 + k3k1
.

This gives

s1 =
k2

k1

(
k1k3s

k1k2 + k2k3 + k3k1

)
=

k2k3s

k1k2 + k2k3 + k3k1
,

s3 =
k2

k3

(
k1k3s

k1k2 + k2k3 + k3k1

)
=

k1k2s

k1k2 + k2k3 + k3k1
.

Thus, the stretches (or compressions) in the springs at equilibrium are in the ratios k2k3 :
k1k3 : k1k2.

k k

M M

1

1

2

2

3k

Figure 4.24
k k

M M

1

1

2

2

3k

x1= 0 x = 0
at position of
in above figure

at position of
in above figure

M1
M2

x1 x22

Figure 4.25

We now derive the differential equations for positions x1(t) and x2(t) of the masses
relative to their equilibrium positions (Figure 4.25). Suppose that s1, s2, and s3 represent
the stretches in the springs at equilibrium. When the masses are at positions x1 and x2, the
stretch in the left spring is s1 + x1 so that the force of this spring on M1 is −k1(s1 + x1).
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Since the stretch in the middle spring is s2+x2−x1, its force on mass M1 is k2(s2 +x2−x1).
Finally, the stretch in the right spring is s3−x2, it exerts a force k3(s3−x2) on M2. Newton’s
second law applied to the two masses gives

M1
d2x1

dt2
= −k1(s1 + x1) + k2(s2 + x2 − x1),

M2
d2x2

dt2
= −k2(s2 + x2 − x1) + k3(s3 − x2).

When we take equations 4.40 into account, these simplify to

M1
d2x1

dt2
= −k1x1 + k2(x2 − x1), (4.41a)

M2
d2x2

dt2
= −k2(x2 − x1) − k3x2. (4.41b)

Example 4.21 Two 100-gram masses are joined by weak springs as shown in Figure 4.24, where k1 = 10,
k2 = 20, and k3 = 10 newtons per metre. At equilibrium, the outside springs are stretched
24 centimetres and the inner spring is stretched 12 centimetres. If mass M1 is pulled 10
centimetres to the left and mass M2 is pulled 10 centimetres to the right, and both masses
are then released, find their subsequent positions.

Solution Displacements x1(t) and x2(t) of the masses from their equilibrium positions
must satisfy equations 4.41,

1
10

d2x1

dt2
= −10x1 + 20(x2 − x1),

1
10

d2x2

dt2
= −20(x2 − x1) − 10x2.

The initial conditions are

x1(0) = − 1
10

, x′
1(0) = 0, x2(0) =

1
10

, x′
2(0) = 0.

In matrix form,

d2

dt2

(
x1

x2

)
=
(
−300 200
200 −300

)(
x1

x2

)
.

Eigenvalues of the matrix are given by

0 = det
(
−300− λ 200

200 −300− λ

)
= (λ + 300)2 − 40 000.

Eigenvalues are λ1 = −100 and λ2 = −500. Corresponding eigenvectors are v1 =
(

1
1

)
and

v2 =
(

1
−1

)
. If q1(t) and q2(t) are components of x(t) with respect to the eigenvector basis,

so that x(t) = q1(t)v1 + q2(t)v2, then

d2

dt2

(
q1

q2

)
=
(
−100 0

0 −500

)(
q1

q2

)
.

Equating entries gives the system of differential equations

d2q1

dt2
= −100q1,

d2q2

dt2
= −500q2.

Once again, the eigenvalue basis has decoupled the system into linear second-order differen-
tial equations in q1(t) and q2(t). Solutions of these are

q1(t) = C1 cos 10t + C2 sin 10t, q2(t) = C3 cos 10
√

5t + C4 sin 10
√

5t.
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To evaluate constants, we return to the natural basis

x(t) = q1(t)v1 + q2(t)v2 = (C1 cos 10t + C2 sin 10t)
(

1
1

)
+ (C3 cos 10

√
5t + C4 sin 10

√
5t)
(

1
−1

)
.

When we equate components,

x1(t) = C1 cos 10t + C2 sin 10t + C3 cos 10
√

5t + C4 sin 10
√

5t,

x2(t) = C1 cos 10t + C2 sin 10t− C3 cos 10
√

5t − C4 sin 10
√

5t.

The initial conditions require

− 1
10

= C1 + C3, 0 = 10C2 + 10
√

5C4,
1
10

= C1 − C3, 0 = 10C2 − 10
√

5C4.

The solution is C1 = C2 = C4 = 0. and C3 = −1/10. Thus,

x1(t) = −
1
10

cos 10
√

5t m, x2(t) =
1
10

cos 10
√

5t m.

The masses move in unison; their displacements are opposite in sign. When M1 moves to
the left, M2 moves to the right, and vice versa.•

Suppose that the masses in Figure 4.22
are turned to the vertical position as in
Figure 4.26. If s1 and s2 are the stretches
in the springs at equilibrium, then,

0 = −k1M1 + k2s2 + M1g,
(4.42)

0 = −k2s2 + m2g.

When the masses are at positions x1 and
x2 relative to their equilibrium positions,
the stretch in the upper spring is s1 − x1

so that the force of this spring on M1 is
k1(s1 − x1). Since the stretch in the lower
spring is s2 + x1 − x2, its force on mass M1

is −k2(s2 + x1 − x2). When gravity is also
taken into account, Newton’s second law for
displacements of the masses gives

M

x1=0
at equilibrium

x1

x2=0
at equilibrium

x2

1

M2

M1
d2x1

dt2
= −M1g + k1(s1 − x1) − k2(s2 + x1 − x2), Figure 4.26

M2
d2x2

dt2
= −M2g + k2(s2 + x1 − x2).

Due to equilibrium conditions 4.42, these simplify to

M1
d2x1

dt2
= −k1x1 + k2(x2 − x1), (4.43a)

M2
d2x2

dt2
= −k2(x2 − x1). (4.43b)

These are identical to equations 4.38. This was what we found in Section 4.3 for a sin-
gle mass-spring system. The same differential equation describes vertical and horizontal
vibrations as long as displacement is measured relative to the equilibrium position.

Example 4.22 Suppose the masses in Figure 4.26 are M1 = 2 and M2 = 1 kilogram, and spring constants
are k1 = 100 and k2 = 50 newtons per metre. The 2 kilogram mass is lifted 10 centimetres
above its equilibrium position and released, while the other mass is simultaneously held at its
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equilibrium position and given velocity 2 metres per second downward. Find the positions
of the masses as functions of time.

Solution Displacements x1(t) and x2(t) of the masses from their equilibrium positions
must satisfy equations 4.43,

2
d2x1

dt2
= −100x1 + 50(x2 − x1), 1

d2x2

dt2
= −50(x2 − x1).

The initial conditions are

x1(0) =
1
10

, x′
1(0) = 0, x2(0) = 0, x′

2(0) = −2.

In matrix form,

d2

dt2

(
x1

x2

)
=
(
−75 25
50 −50

)(
x1

x2

)
.

Eigenvalues of the matrix are given by

0 = det
(
−75− λ 25

50 −50− λ

)
= (λ + 75)(λ + 50) − 1250.

Eigenvalues are λ1 = −25 and λ2 = −100. Corresponding eigenvectors are v1 =
(

1
2

)
and

v2 =
(

1
−1

)
. If q1(t) and q2(t) are components of x(t) with respect to the eigenvector basis,

so that x(t) = q1(t)v1 + q2(t)v2, then

d2

dt2

(
q1

q2

)
=
(
−25 0
0 −100

)(
q1

q2

)
.

Equating entries gives the system of differential equations

d2q1

dt2
= −25q1,

d2q2

dt2
= −100q2.

Solutions of these are

q1(t) = C1 cos 5t + C2 sin 5t, q2(t) = C3 cos 10t + C4 sin 10t.

To evaluate constants, we return to the natural basis

x(t) = q1(t)v1 + q2(t)v2 = (C1 cos 5t + C2 sin 5t)
(

1
2

)
+ (C3 cos 10t + C4 sin 10t)

(
1
−1

)
.

When we equate components,

x1(t) = C1 cos 5t + C2 sin 5t + C3 cos 10t + C4 sin 10t,

x2(t) = 2(C1 cos 5t + C2 sin 5t) − (C3 cos 10t + C4 sin 10t).

The initial conditions require

1
10

= C1 + C3, 0 = 5C2 + 10C4, 0 = 2C1 − C3, −2 = 10C2 − 10C4.

The solution is C1 = 1/30, C2 = −2/15, C3 = 1/15, and C4 = 1/15. Thus,

x1(t) =
1
30

cos 5t − 2
15

sin 5t +
1
15

cos 10t +
1
15

sin 10t m,

x2(t) =
1
15

cos 5t − 4
15

sin 5t− 1
15

cos 10t − 1
15

sin 10t m.•
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In the final example, we add a forcing function to one of the masses.

Example 4.23 Repeat Example 4.18, but add a force 4 sin 5t acting on M1.

Solution Displacements x1(t) and x2(t) of the masses from their equilibrium positions
must satisfy the equations

d2x1

dt2
= −10x1 + 4x2 + 4 sin 5t,

d2x2

dt2
= 4x1 − 4x2.

Initial conditions remain

x1(0) =
1
10

, x′
1(0) = 0, x2(0) = −1

5
, x′

2(0) = 0.

In matrix form,

d2

dt2

(
x1

x2

)
=
(
−10 4
4 −4

)(
x1

x2

)
+
(

4 sin 5t
0

)
.

Eigenvalues of the matrix are still λ1 = −2 and λ2 = −12 with corresponding eigenvectors

v1 =
(

1
2

)
and v2 =

(
−2
1

)
. If q1(t) and q2(t) are components of x(t) with respect to the

eigenvector basis, so that x(t) = q1(t)v1 + q2(t)v2, then

d2

dt2

(
q1

q2

)
=
(
−2 0
0 −12

)(
q1

q2

)
+
(

b1

b2

)
,

where b1 and b2 are the components of the vector (4 sin 5t, 0) with respect to the eigenvalue
basis. These turn out to be b1 = (4/5) sin 5t and b2 = −(8/5) sin 5t. Equating entries gives
the system of differential equations

d2q1

dt2
= −2q1 +

4
5

sin 5t,
d2q2

dt2
= −12q2 −

8
5

sin 5t.

Solutions of these are

q1(t) = C1 cos
√

2t + C2 sin
√

2t − 4
115

sin 5t, q2(t) = C3 cos 2
√

3t + C4 sin 2
√

3t +
8
65

sin 5t.

To evaluate constants, we return to the natural basis

x(t) = q1(t)v1 + q2(t)v2

=
(

C1 cos
√

2t + C2 sin
√

2t − 4
115

sin 5t

)(
1
2

)
+
(

C3 cos 2
√

3t + C4 sin 10t +
8
65

sin 5t

)(
−2
1

)
.

When we equate components,

x1(t) =
(

C1 cos
√

2t + C2 sin
√

2t − 4
115

sin 5t

)
− 2

(
C3 cos 2

√
3t + C4 sin 2

√
3t +

8
65

sin 5t

)

= C1 cos
√

2t + C2 sin
√

2t − 2C3 cos 2
√

3t − 2C4 sin 2
√

3t − 84
299

sin 5t

x2(t) = 2
(

C1 cos
√

2t + C2 sin
√

2t − 4
115

sin 5t

)
+
(

C3 cos 2
√

3t + C4 sin 2
√

3t +
8
65

sin 5t

)

= 2C1 cos
√

2t + 2C2 sin
√

2t + C3 cos 2
√

3t + C4 sin 2
√

3t +
16
299

sin 5t.

The initial conditions require

1
10

= C1 − 2C3, 0 =
√

2C2 − 4
√

3C4 −
420
299

, −1
5

= 2C1 + C3, 0 = 2
√

2C2 + 2
√

3C4 +
80
299

.

The solution is C1 = −3/50, C2 = 2
√

2/23, C3 = −2/25, and C4 = −4
√

3/39. Thus,
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x1(t) = − 3
50

cos
√

2t +
2
√

2
23

sin
√

2t +
4
25

cos 2
√

3t +
8
√

3
39

sin 2
√

3t − 84
299

sin 5t

x2(t) = − 3
25

cos
√

2t +
4
√

2
23

sin
√

2t − 2
25

cos 2
√

3t − 4
√

3
39

sin 2
√

3t +
16
299

sin 5t.•

EXERCISES 4.4

In Exercises 1–2 find positions of the masses in Figure 4.22 given the following values for k1,
k2, M1, and M2, and initial values.

1. k1 = 6, k2 = 4, M1 = 1, M2 = 1; x1(0) = 1, x′
1(0) = 0, x2(0) = −1, x′

2(0) = 0

2. k1 = 6, k2 = 4, M1 = 1, M2 = 1; x1(0) = 0, x′
1(0) = 1, x2(0) = 0, x′

2(0) = −1

3. Solve Exercise 2 if damping proportional to velocity with β = 1 also acts on the masses.

4. Solve Example 4.18 if damping proportional to velocity with β = 8 also acts on the masses.

5. Solve Exercise 2 if a force 3 sin t acts on M1.

6. Solve Exercise 2 if a force 3 sin
√

2t acts on M2. Does resonance occur?

In Exercises 7–8 find positions of the masses in Figure 4.24 given the following values for k1,
k2, k3, M1, and M2, and initial values. Assume that at equilibrium there are no stretches or
compressions in the springs.

7. k1 = 10, k2 = 20, k3 = 10, M1 = 1/10, M2 = 1/10; x1(0) = 0, x′
1(0) = 1, x2(0) = 2, x′

2(0) = −1

8. k1 = 200, k2 = 100, k3 = 200, M1 = 1, M2 = 2; x1(0) = 1/10, x′
1(0) = −1, x2(0) = −1/10, x′

2(0) = 1

In Exercises 9–10 find positions of the masses in Figure 4.26 given the following values for k1,
k2, M1, and M2, and initial values.

9. k1 = 100, k2 = 200, M1 = 2, M2 = 1; x1(0) = 1/200, x′
1(0) = 0, x2(0) = −1/100, x′

2(0) = 0

10. k1 = 100, k2 = 200, M1 = 2, M2 = 1; x1(0) = 1/40, x′
1(0) = −1/2, x2(0) = 0, x′

2(0) = 0

11. Masses M1 and M2 are joined by springs with constants k1 and k2 as shown below. Verify that when M2

is pulled a distance s to the right, stretches in the spring are

s1 =
k2s

k1 + k2
, s2 =

k1s

k1 + k2
.

k k

M M

1

1

2

2

12. Show that if the configuration in Exercise 11 is turned vertically with M2 below M1, then stretches in
the springs at equilibrium are

s1 =
(M1 + M2)g

k1
, s2 =

M2g

k2
.

Answers

1. x1(t) = −1
5

cos
√

2t +
6
5

cos 2
√

3t, x2(t) = −2
5

cos
√

2t − 3
5

cos 2
√

3t
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2. x1(t) = −
√

2
10

sin
√

2t +
√

3
5

sin 2
√

3t, x2(t) = −
√

2
5

sin
√

2t −
√

3
10

sin 2
√

3t

3. x1(t) = − 2
5
√

7
e−t/2 sin

√
7t

2
+

12
5
√

47
e−t/2 sin

√
47t
2

,

x2(t) = − 4
5
√

7
e−t/2 sin

√
7t
2

− 6
5
√

47
e−t/2 sin

√
47t
2

4. x1(t) = −3(7 + 2
√

14)
700

e(−4+
√

14)t +
3(−7 + 2

√
14)

700
e−(4+

√
14)t +

6
25

e−2t − 2
25

e−6t

x2(t) = −3(7 + 2
√

14)
350

e(−4+
√

14)t +
3(−7 + 2

√
14)

350
e−(4+

√
14)t − 3

25
e−2t +

1
25

e−6t

5. x1(t) = −2
√

2
5

sin
√

2t +
9
√

3
55

sin 2
√

3t +
9
11

sin t, x2(t) = −4
√

2
5

sin
√

2t − 9
√

3
110

sin 2
√

3t +
12
11

sin t

6. x1(t) = −

(
2
√

2
5

+
3
20

)
sin

√
2t +

9
√

3
55

sin 2
√

3t − 3
√

2t

10
cos

√
2t

x2(t) = −4
√

2
5

sin
√

2t − 9
√

3
110

sin 2
√

3t − 3
√

2t
5

cos
√

2t, Yes

7. x1(t) = cos 10t − cos 10
√

5t +
√

5
50

sin 10
√

5t, x2(t) = cos 10t + cos 10
√

5t −
√

5
10

sin 10
√

5t

8. x1(t) =
√

17
340

{
(7 +

√
17) cos 5

√
9 +

√
17t −

(
14 + 2

√
17√

9 +
√

17

)
sin 5

√
9 +

√
17t

+(
√

17 − 7) cos 5
√

9 −
√

17t +

(
14 − 2

√
17√

9 −
√

17

)
sin 5

√
9−

√
17t
}

,

x2(t) =
√

17
340

{
(1 −

√
17) cos 5

√
9 +

√
17t +

(
2
√

17− 2√
9 +

√
17

)
sin 5

√
9 +

√
17t

−(1 +
√

17) cos 5
√

9 −
√

17t +

(
2 + 2

√
17√

9 −
√

17

)
sin 5

√
9−

√
17t
}

9. x1(t) =
1

13 200

[
(33 − 7

√
33) cos 5

√
7 −

√
33t + (33 + 7

√
33) cos 5

√
7 +

√
33t
]

x2(t) =
1

6600

[
(5
√

33− 33) cos 5
√

7 −
√

33t − (5
√

33 + 33) cos 5
√

7 +
√

33t
]

10. x1(t) =
1

2640
[
(33 +

√
33)(cos 5

√
7 −

√
33t −

√
7 +

√
33 sin 5

√
7 −

√
33t)

+ (33 −
√

33)(cos 5
√

7 +
√

33t −
√

7 −
√

33 sin 5
√

7 +
√

33t)
]
,

x2(t) =
√

33
330

[
cos 5

√
7 −

√
33t − 4√

7 −
√

33
sin 5

√
7 −

√
33t

− cos 5
√

7 +
√

33t +
4√

7 +
√

33
sin 5

√
7 +

√
33t
]


