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CHAPTER 5 REAL AND COMPLEX NORMED, METRIC, AND INNER PRODUCT SPACES

So far, our studies have concentrated only on properties of vector spaces that follow from
Definition 1.1. Spaces G2 and G3 of geometric vectors, however, have additional properties
due to the fact that such vectors have lengths, dot products of vectors can be taken, and
there is a distance function. In this chapter, we extend these ideas to other vector spaces.
When a vector space is equipped with an inner product (the generalization of a dot product),
it is called an inner product space; when it is equipped with a norm (the generalization of
length), it is called a normed space; and when it is equipped with a metric (the generalization
of distance), it is called a metric space. Norms and metrics are often defined in terms of
inner products, but they can also be defined independently of inner products. To emphasize
this, we discuss each type of space separately, and then show that an inner product induces
a norm and a distance function so that every inner product space can be turned into a
normed space and a metric space.

§5.1 Normed Spaces

Norms in Real Spaces

The length of a vector v = 〈vx, vy〉 in G2 is

‖v‖ =
√

v2
x + v2

y , (5.1)

and the length of a vector v = 〈vx, vy, vz〉 in G3 is

‖v‖ =
√

v2
x + v2

y + v2
z . (5.2)

To introduce a norm into a real vector space (the generalization of length in G2 and G3), we
ask what properties characterize lengths in equations 5.1 and 5.2. Convince yourself that
these lengths satisfy the following properties:

‖cv‖ = |c| ‖v‖, where c is a constant, (5.3a)
‖v‖ ≥ 0, and ‖v‖ = 0 if, and only if, v = 0, (5.3b)

‖u + v‖ ≤ ‖u‖+ ‖v‖. (5.3c)

The first of these requires the length of a multiple of a vector to be the absolute value of the
constant times the length of the vector itself; the second requires lengths of nonzero vectors
to be positive; the last is often called the triangle inequality. Geometrically, it requires
the length of any side of a triangle to be less than the sum of the lengths of the other two
sides. It is these properties that we use to define norms in other vector spaces.

Definition 5.1 A norm on a real vector space V is a real-valued function ‖v‖ of vectors v in the space
that satisfies properties 5.3. A vector space equipped with a norm is called a real normed
space.

The most common norm for the space Rn is the Euclidean norm. For a vector v =
(v1, v2, . . . , vn), it is defined as

‖v‖ =
√

v2
1 + v2

2 + · · · + v2
n. (5.4)

It is straightforward to verify that the Euclidean norm satisfies properties 5.3. It is the
generalization of length in G2 and G3. Equipped with the Euclidean norm, Rn is called
Euclidean n-space, denoted by En.

Many norms can often be associated with a vector space. Which is the most useful
depends on the application in which the vector space arose. Here are some other norms for
Rn:
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1. The 1-norm,

‖v‖1 = |v1| + |v2| + · · · + |vn|. (5.5)

2. For any integer p ≥ 1, the p-norm

‖v‖p = [|v1|p + |v2|p + · · · + |vn|p]1/p. (5.6)

3. The ∞-norm or sup-norm

‖v‖∞ =
maximum

j = 1, . . . , n
|vj |. (5.7)

The 1-norm and the Euclidean norm are the special cases of the p-norm when p = 1 and
p = 2. We have used subscripts to denote these various norms in Rn. When no subscript is
present, it is assumed to be the Euclidean norm.

Example 5.1 Verify that in the space C0[a, b] of continuous functions on the interval a ≤ x ≤ b, the
maximum value of the absolute value of a function on the interval is a norm.

Solution It is not a trivial fact to prove, but you may recall that in your first calculus
class, it was stated that a continuous function on a closed interval must attain a maximum
value on the interval. This assures us that the norm is well-defined. If we denote the
maximum value by

‖f(x)‖ =
maximum
a ≤ x ≤ b

|f(x)|,

we must show that it satisfies properties 5.3. Since

‖cf(x)‖ =
maximum
a ≤ x ≤ b

|cf(x)| = |c|maximum
a ≤ x ≤ b

|f(x)| = |c| ‖f(x)‖,

property 5.3a is satisfied. Clearly, ‖f(x)‖ ≥ 0, and the only way for ‖f(x)‖ to be equal to
zero is for f(x) ≡ 0. In other words, we have property 5.3b. Finally,

‖f(x) + g(x)‖ =
maximum
a ≤ x ≤ b

|f(x) + g(x)|

≤ maximum
a ≤ x ≤ b

|f(x)| + maximum
a ≤ x ≤ b

|g(x)|

= ‖f(x)‖ + ‖g(x)‖,

the triangle inequality.•

Here is another norm for the space C0[a, b].

Example 5.2 Verify that

‖f(x)‖ =
∫ b

a

|f(x)| dx

is also a norm for C0[a, b].

Solution The fact that the definite integral of a continous functions exists once again
assures us that the norm is well-defined. Properties 5.3 are straightforward to check:

‖c f(x)‖ =
∫ b

a

|c f(x)| dx = |c|
∫ b

a

|f(x)| dx = |c| ‖f(x)‖,

‖f(x)‖ =
∫ b

a

|f(x)| dx ≥ 0, and
∫ b

a

|f(x)| dx = 0 if, and only if f(x) = 0,

‖f(x) + g(x)‖ =
∫ b

a

|f(x) + g(x)| dx ≤
∫ b

a

[|f(x)| + |g(x)|] dx =
∫ b

a

|f(x)| dx +
∫ b

a

|g(x)| dx

= ‖f(x)‖ + ‖g(x)‖.•
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In G2 and G3, the norm of a vector is geometric, the length of the vector as a line
segment. In other vector spaces, the norm of a vector cannot be interpreted geometrically.
For instance, in Example 5.2, there is no geometric interpretation for the norm of the
function. It is not, for instance, the length of the graph of the function from x = a to x = b.

When the norm of a vector is equal to 1, it is called a unit vector. We customarily
indicate that a vector is a unit vector by placing a hat on it v̂ (just as we do for î, ĵ, and k̂).
It is easy to find a unit vector in the same “direction” as any given vector v, simply divide
v by its norm,

v̂ =
v

‖v‖
. (5.8)

When we have converted a vector into a unit vector in the same “direction”, we say that we
have normalized the vector. A unit vector in the direction “opposite” to v is

v̂ = − v
‖v‖

. (5.9)

Example 5.3 Normalize the vector (function) f(x) = x3 − 2x in C0[0, 2] using the norm of Example 5.2.

Solution Since the norm of the function is

‖f(x)‖ =
∫ 2

0

|x3 − 2x| dx =
∫ √

2

0

(2x − x3) dx +
∫ 2

√
2

(x3 − 2x) dx

=
{

x2 − x4

4

}√
2

0

+
{

x4

4
− x2

}2

√
2

= 2,

a normalized function is

f̂(x) =
1
2
(x3 − 2x).•

Norms in Complex Spaces

Norms can also be introduced into complex vector spaces. They satisfy properties 5.3 where
|c| is interpreted as the modulus of c. For instance, the modulus of a complex number is
a norm in the vector space C of complex numbers. The norm in Cn corresponding to the
Euclidean norm in Rn is

‖(c1, c2, . . . , cn)‖ =
√
|c1|2 + |c2|2 + · · · + |cn|2, (5.10)

where vertical bars denote moduli. The 1-norm, the p-norm, and the ∞-norm for Rn are
also norms for Cn, where once again absolute values must be interpreted as moduli.

Example 5.4 Normalize the vector v = (3 + 4i,−2, 3i) in C3 using the norm in equation 5.10.

Solution Since the norm of the vector is

‖(3 + 4i,−2, 3i)‖ =
√
|3 + 4i|2 + | − 2|2 + |3i|2 =

√
25 + 4 + 9 =

√
38,

a normalized vector is

v̂ =
1√
38

(3 + 4i,−2, 3i).•

EXERCISES 5.1

1. Verify that the 1-norm and the infinity norm in Rn satisfy properties 5.3.
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2. With the Euclidean norm in G2, tips of vectors described by the inequality ‖v‖ ≤ 1 lie inside and on the
unit circle centred at the origin. What does the equation describe with the 1-norm, the p-norm, and the
infinity norm?

3. Repeat Exercise 2 with the Euclidean norm in G3.

4. (a) Show that in P2(x), the function

‖a + bx + cx2‖ =
√

a2 + b2 + c2,

is a norm.
(b) Find a unit vector (function) in the same “direction” as p(x) = 1 − 2x + 3x2.

5. An important space in control theory is the space of complex, rational functions that do not have poles
on the unit circle |z| = 1. Show that

‖f(z)‖ =
[

1
2π

∫ 2π

0

|f(eiθ)|2dθ

]1/2

is well-defined and satisfies properties 5.3a,b.

Answers

2. Inside and on the square |vx| + |vy | = 1; inside and on the curve |vx|p + |vy|p = 1; the square
−1 ≤ vx, vy ≤ 1

3. Inside and on the cube |vx| + |vy| + |vz| = 1; inside and on the surface |vx|p + |vy|p + |vz|p = 1;
the cube −1 ≤ vx, vy, vz ≤ 1

4.(b) (1 − 2x + 3x2)/
√

14
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§5.2 Metric Spaces

When u = 〈ux, uy, uz〉 and v = 〈vx, vy, vz〉 are vectors in G3, the length of u − v is

‖u− v‖ =
√

(ux − vx)2 + (uy − vy)2 + (uz − vz)2. (5.11)

It can be interpreted as a distance in G3, the distance between the points (ux, uy, uz) and
(vx, vy, vz) at the tips of the vectors. We also say that it is the distance between the vectors
themselves. In other words, if we denote the distance between two vectors u and v in G3 by
d(u,v), then

d(u,v) =
√

(ux − vx)2 + (uy − vy)2 + (uz − vz)2. (5.12)

Distances can be defined in many sets of entities that may, or may not, be vector spaces,
and we will illustrate some examples shortly. But first we ask what are the properties
that characterize distance. Convince yourself that the distance function d(u,v) defined by
equation 5.12 satisfies the following properties for any vectors u, v, and w:

d(u,v) ≥ 0 and d(u,v) = 0 if, and only if, u = v, (5.13a)
d(u,v) = d(v,u), (5.13b)
d(u,v) ≤ d(u,w) + d(w,v). (5.13c)

The first of these requires the distance between unequal vectors to be positive; the second
requires the distance function to be symmetric in its arguments; and the last is the triangle
inequality that we saw for norms, but now in terms of distances. It is these properties that
we use to define a metric in other contexts.

Definition 5.2 A distance function or metric, d(u,v) on elements u and v in a set S is a real-valued
function of pairs of elements that satisfies properties 5.13. The set is said to be equipped
with a distance function or a metric.

Obviously, our intention is to introduce a distance function, or metric, into vector spaces,
but it is important to realize that distances can be defined in sets other than vector spaces.
In other words, although we have used vector notation to represent elements in Definition
5.2, these elements need not be vectors. Here are some examples, the first two of which are
metrics in sets that are not vector spaces.

Example 5.5 Let S be the set of n-letter words in a k-character alphabet. Denote words as v =
(v1, v2, . . . , vn), where the vj are letters from the alphabet. Define the distance between
two words u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) as the number of places in which
letters are different; that is,

d(u,v) =
n∑

j=1

xj , where xj =
{

0, if uj = vj

1, if uj 6= vj .

Show that d(u,v) satisfies properties 5.13.

Solution Properties 5.13a,b are clear. Suppose u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn),
and w = (w1, w2, . . . , wn) are words in S, and consider the jrh entries. If uj = vj , then this
entry contributes 0 to d(u,v). The jth entries in d(u,w) + d(w,v) contribute either 0 or
2 depending on whether wj = uj or wj 6= uj . If uj 6= vj , then this entry contributes 1 to
d(u,v). The jth entries in d(u,w) + d(w,v) contribute 1 when wj = uj or wj = vj , or 2
when wj 6= uj and wj 6= vj . Thus, the contribution of the jth entries of d(u,w) + d(w,v)
is greater than or equal to that of d(u,v). Since this is true for all n entries, property 5.13c
is verified.•
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Example 5.6 Let V be a metric space, a vector space with a metric. Does the metric on V , endow any
subset S of V with a metric? Would you call S a metric space?

Solution The metric on V certainly induces the same distances between vectors in S, so
that S is endowed with a metric. But S is not defined to be a subspace of V , so that it
would imprudent to call S a metric space (although this is often done).•

Example 5.7 Using the norm of Example 5.2, we can define a metric for C0[0, 1] to be

d
(
f(x), g(x)

)
= ‖f(x) − g(x)‖ =

∫ 1

0

|f(x) − g(x)| dx.

Find d(1 + x2, 3x − x3).

Solution Using the definition of the metric

d(1 + x2, 3x − x3) =
∫ 1

0

|(1 + x2) − (3x − x3)| dx =
∫ 1

0

| − 2x + x2 − x3| dx.

Since −2x + x2 − x3 is always negative between x = 0 and x = 1, we can write that

d(1 + x2, 3x − x3) =
∫ 1

0

(2x − x2 + x3) dx =
{

x2 − x3

3
+

x4

4

}1

0

=
11
12

.•

The metric in Rn corresponding to metric 5.12 in G3 is

d(u,v) =
√

(u1 − v1)2 + (u1 − v2)2 + · · · + (un − vn)2. (5.14)

It is interpreted as the distance between the vectors in Rn. A distance function for vectors
z and w in Cn with complex components (z1, z2, . . . , zn) and (w1, w2, . . . , wn), respectively,
is

d(z,w) =
√
|z1 − w1|2 + |z2 − w2|2 + · · · + |zn − wn|2, (5.15)

where vertical bars are moduli.

EXERCISES 5.2

1. Let S be the set of vectors in G2 which have their tips on the unit circle centred at the origin. Let
d(u,v) = ‖u− v‖. Is this a metric on S? Would you call S a metric subspace of G2?

2. Let S be a finite collection of n objects denoted by xj , j = 1, . . . , n. Show that the function

d(xj , xk) =
{

0, if j = k
1, if j = k

defines a metric on S. Is it possible for S to be a vector space?

3. When n = 1 in equation 5.15, does the distance function reduce to what you would expect?

Answers

1. Yes, No 2. No 3. Yes
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§5.3 Inner Product Spaces

The dot or scalar product of two vectors u = uxî + uy ĵ + uzk̂ and v = vxî + vy ĵ + vzk̂ in G3

is defined as

u · v = uxvx + uyvy + uzvz. (5.16)

This is not the only such product for G3, but it is the usual one. It is called the standard
dot product or standard scalar product. In this section, we generalization the dot
product to define what are called inner products in general vector spaces. Because they are
defined differently in real, as opposed to complex, vector spaces, we consider these spaces
separately.

Real Inner Product Spaces

The notation that we use for the inner product of two vectors in more abstract vector spaces
is (u,v). Although parentheses also denote scalar components of vectors, no confusion can
arise since scalar components of vectors are scalars, and entries in the inner product are
vectors. To see how to define inner products, we note that in the new notation, the dot
product in G2 and G3 satisfies the following three properties. For any vectors u, v, and w,
and any real scalars c1 and c2:

(c1u + c2v,w) = c1(u,w) + c2(v,w), (5.17a)
(u,v) = (v,u), (5.17b)
(u,u) ≥ 0, and (u,u) = 0 if, and only if, u = 0. (5.17c)

The first property requires the inner product to be linear in its first argument. Due to the
requirement of symmetry in property 5.17b, the inner product must also be linear in its
second argument,

(u, c1v + c2w) = c1(u,v) + c2(u,w).

It is these properties of the dot product that we use to define inner products in other
vector spaces.

Definition 5.3 If V is a real vector space, then an inner product on V is any real-valued function (u,v)
of pairs of vectors in V that satisfies conditions 5.17. A vector space endowed with an inner
product is called an inner product space.

Obviously, G2 and G3 are inner product spaces, as is Rn with the inner product

(x,y) = x1y1 + x2y2 + · · · + xnyn. (5.18)

This is called the standard inner product for Rn. Here are further examples of inner
product spaces.

Example 5.8 Show that when u(x) = u0 +u1x+u2x
2 and v(x) = v0 + v1x+ v2x

2 are vectors in the space
P2(x) of real polynomials of degree less than or equal to two, the function

(u, v) = u0v0 + u1v1 + u2v2

is an inner product.

Solution If w(x) = w0 + w1x + w2x
2 is a third vector, then

(c1u + c2v, w) =
(
(c1u0 + c2v0) + (c1u1 + c2v1)x + (c1u2 + c2v2)x2, w0 + w1x + w2x

2
)

= (c1u0 + c2v0)w0 + (c1u1 + c2v1)w1 + (c1u2 + c2v2)w2

= c1(u0w0 + u1w1 + u2w2) + c2(v0w0 + v1w1 + v2w2)
= c1(u, w) + c2(v, w).
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This verifies property 5.17a. The remaining properties 5.17b,c can be verified in a similar
way.•

Example 5.9 Show that when u(x) and v(x) are vectors in the space C0[a, b] of continuous functions on
the interval a ≤ x ≤ b, the function

(u, v) =
∫ b

a

u(x)v(x) dx

is an inner product.

Solution If w(x) is a third vector, then

(c1u + c2v, w) =
∫ b

a

(c1u + c2v)w dx = c1

∫ b

a

uv dx + c2

∫ b

a

vw dx = c1(u, w) + c2(v, w).

This confirms property 5.17a. The remaining properties 5.17b,c can be verified in a similar
way.•

Complex Inner Product Spaces

Inner products on complex vector spaces are defined as follows.

Definition 5.4 An inner product on a complex vector space V is a complex-valued function (u,v) on
pairs of vectors in V such that for any three vectors u, v, and w in V , and any two complex
scalars c1 and c2:

(c1u + c2v,w) = c1(u,w) + c2(v,w), (5.19a)
(w, c1u + c2v) = c1(w,u) + c2(w,v), (5.19b)

(u,v) = (v,u), (5.19c)
(u,u) > 0, and (u,u) = 0 if, and only if, u = 0. (5.19d)

A complex space equipped with an inner product is called a complex inner product
space.

The overline on c1 denotes the complex conjugate of c1. We say that the inner product
is linear in its second argument, conjugate linear in its first argument, and conjugate sym-
metric. Although we have listed property 5.19b as a separate requirement for a complex
inner product, in actual fact, it is a consequence of properties 5.19a,c (see Exercise 1).

Most mathematics texts replace properties 5.19a,b with

(c1u + c2v,w) = c1(u,w) + c2(v,w), (5.20a)
(w, c1u + c2v) = c1(w,u) + c2(w,v). (5.20b)

The inner product becomes linear in its first argument and conjugate linear in the second.
Physicists use properties 5.19a,b. With either choice, the ensuing theory unfolds in much
the same way. We will continue with the choice of physicists.

Corresponding to standard inner product 5.18 in Rn, the standard inner product
for two vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) in Cn is

(u,v) = u1v1 + u2v2 + · · · + unvn. (5.21)

(For mathematicians requiring properties 5.20, definition 5.21 is replaced by

(u,v) = u1v1 + u2v2 + · · · + unvn.) (5.22)

Example 5.10 What is the standard inner product of the vectors (1+2i,−3+ i, 4−3i) and (i, 2−3i, 4+5i)
in C3?
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Solution Using equation 5.21,
(
(1 + 2i,−3 + i, 4− 3i), (i, 2− 3i, 4 + 5i)

)
= (1 − 2i)(i) + (−3− i)(2 − 3i) + (4 + 3i)(4 + 5i) =
= −6 + 40i.•

Orthogonal Vectors

In G3, the natural basis {̂i, ĵ, k̂} has a special property not shared by bases in spaces that
do not have an inner product. The vectors are mutually perpendicular and all have length
one. We know that the test for perpendicularity of vectors in this space is that their inner
(dot) product is zero. In the following definition, we extend the idea of perpendicularity to
all real and complex, inner product spaces, but give it a new name.

Definition 5.5 Two nonzero vectors u and v in an inner product space are said to be orthogonal if their
inner product is zero,

(u,v) = 0. (5.23)

A set of nonzero vectors {v1,v2, . . . ,vm} is said to be orthogonal if every vector is orthogonal
to every other vector; that is, whenever j 6= k,

(vj ,vk) = 0. (5.24)

Orthogonal is the more general terminology for perpendicular in spaces where there is
no geometric interpretation of what it means for vectors to be perpendicular.

Example 5.11 Show that the vectors p1(x) = 1−x+3x2 and p2(x) = −1+2x+x2 are orthogonal in P2(x)
with respect to the inner product in Example 5.8.

Solution Since the inner product of the vectors is

(1 − x + 3x2,−1 + 2x + x2) = (1)(−1) + (−1)(2) + (3)(1) = 0,

the vectors are orthogonal.•

Example 5.12 The set of functions
{

sin
nπx

L

}
, where n ≥ 1 is an integer, are used in finding the Fourier

sine series for odd functions of period 2L. The reason for this is that the functions are
orthogonal on the interval 0 ≤ x ≤ L with respect to the inner product

(
f(x), g(x)

)
=

∫ L

0

f(x)g(x) dx.

Verify this.

Solution The inner product of two of the functions is
(
sin

nπx

L
, sin

mπx

L

)
=

∫ L

0

sin
nπx

L
sin

mπx

L
dx

=
∫ L

0

[
− cos

(n + m)πx

L
+ cos

(n − m)πx

L

]
dx

=
1
2

{
− L

(n + m)π
sin

(n + m)πx

L
+

L

(n − m)π
sin

(n − m)πx

L

}L

0

= 0.•

Example 5.13 Are the vectors (3 + i, 2 − 4i, 5i) and (2 + 2i, i, 3) orthogonal with respect to the standard
inner product 5.21 on C3?

Solution Since the inner product of the vectors is
(
(3 + i, 2 − 4i, 5i), (2 + 2i, i, 3)

)
= (3 − i)(2 + 2i) + (2 + 4i)(i) + (−5i)(3) = 4 − 9i,
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the vectors are not orthogonal.•

Example 5.14 Show that the vectors (1 + i, 3− 2i, 6) and (2− i, 3+ 5i,−3i) are orthogonal with respect to
the standard inner product 5.21 in C3.

Solution Since the inner product of the vectors is
(
(1 + i, 3− 2i, 6), (2− i, 3 + 5i,−3i)

)
= (1 − i)(2 − i) + (3 + 2i)(3 + 5i) + 6(−3i) = 0,

the vectors are orthogonal.•

According to the following theorem, orthogonal vectors are linearly independent.

Theorem 5.1 If a set of vectors in an inner product space is orthogonal, then the set is linearly independent.

Proof Suppose the set {v1,v2, . . . ,vm} of vectors is orthogonal, and consider finding
constants c1, . . . , cm so that

c1v1 + c2v2 + · · · + cmvm = 0.

If we take inner products of vectors on both sides of this equation with vk, we obtain

(vk , c1v1 + c2v2 + · · · + cmvm) = 0.

Because the inner product is linear in its second argument, we can write that

c1(vk,v1) + c2(vk,v2) + · · · + cm(vk,vm) = 0.

Since the vectors are orthogonal, all inner products are zero, except the kth one,

ck(vk,vk) = 0.

Property 5.17c (or 5.19d) implies that (vk ,vk) 6= 0. Hence, ck = 0, and this is true for
k = 1, . . . , m. The vectors are therefore linearly independent.

EXERCISES 5.3

1. Verify that properties 5.19a,c imply property 5.19b.

2. Verify that inner product 5.21 satisfies properties 5.19.

In Exercises 3–4 use the inner product of Example 5.9 to determine whether the functions are
orthogonal on the interval 0 ≤ x ≤ 1.
3. 1 − x, 2 + 3x 4. 3 − 5x, x2 − x3

In Exercises 5–6 determine whether the pair of vectors is orthogonal with respect to the stan-
dard inner product in C2.
5. (2 + 4i, 3− 2i), (i,−1 + 2i) 6. (1 − 5i, 1 + i), (3 + i, 9 − 7i)

In Exercises 7–8 determine whether the pair of vectors is orthogonal with respect to the stan-
dard inner product in C3.
7. (2 + 4i, 3− 2i, 1 + 2i), (i,−1 + 2i, 3) 8. (1 − 5i, 1 + i, i), (3 + i, 9− 7i, 1)

9. Determine the value for the constant a so that the functions f(x) = 4x2 − 1 and g(x) = 1 + ax are
orthogonal on the interval 1 ≤ x ≤ 2 with the inner product of Example 5.9.

10. Let u = (u1, . . . , un) and v = (v1, . . . , vn) be vectors in Rn. Verify that for any nonnegative constants
a1, . . . , an, but not all zero,

(u,v) =
n∑

j=1

ajujvj
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is an inner product. Is there a reason for demanding that the constants not be negative?

11. Show that if w(x) ≥ 0 is a continuous function on the interval a ≤ x ≤ b, and not identically equal to
zero, then

∫ b

a

w(x)f(x)g(x) dx

is an inner product on C0[a, b].

12. With the inner product of two functions f(x) and g(x)
∫ 2L

0

f(x)g(x) dx,

show that the set of functions
{
1, cos

nπx

L
, sin

nπx

L

}
(n ≥ 1 an integer) is orthogonal. These are the

functions forming the basis for Fourier series of 2L-periodic functions.

13. With the inner product of Example 5.12, show that the set of functions
{
1, cos

nπx

L

}
(n ≥ 1 an integer)

is orthogonal. These are the functions forming the basis for Fourier cosine series of even, 2L-periodic
functions.

14. (a) The nth-degree Legendre polynomial is defined as

pn(x) =
bn/2c∑

k=0

(−1)k(2n − 2k)!
2nk!(n − 2k)!(n − k)!

xn−2k, n ≥ 0,

where bnc is the floor (or greatest integer) function. Find the first four polynomials.
(b) Show that if the inner product of two functions f(x) and g(x) is defined as

∫ 1

−1

f(x)g(x) dx,

the four polynomials in part (a) are orthogonal.
(c) All Legendre polynomials are in fact orthogonal on the interval −1 ≤ x ≤ 1. Find a set of functions

that are orthogonal on the interval a ≤ x ≤ b with respect to the same inner product, but with limits
of integration being a and b.

15. (a) The nth-degree Hermite polynomial is defined as

hn(x) = (−1)nex2 dn

dxn
e−x2

, n ≥ 0.

Find the first four polynomials.
(b) Show that if the inner product of two functions f(x) and g(x) is defined as

∫ ∞

−∞
e−x2

f(x)g(x) dx,

the four polynomials in part (a) are orthogonal.

16. (a) The nth-degree Chebyshev polynomial is defined by the recursive formula

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x) − Tn−1(x), n ≥ 1.

Find T2(x) and T3(x).
(b) Show that if the inner product of two functions f(x) and g(x) is defined as

∫ 1

−1

f(x)g(x)√
1 − x2

dx,
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the four polynomials in part (a) are orthogonal.

17. The trace of a real, square matrix A = (aij)n×n is defined to be the sum of its diagonal entries,

Trace(A) =
n∑

i=1

aii.

(a) Show that the function

(A, B) = Trace(AT B)

is an inner product on Mn,n(R).
(b) Is the natural basis for M2,2(R) orthogonal with respect to this inner product?

(c) Find all matrices in M2,2(R) orthogonal to
(
−1 −3
5 8

)
.

18. If p(x) and q(x) are polynomials in the space Pn(x), is the function

(
p(x), q(x)

)
=

n∑

j=0

p(j)q(j)

an inner product?

19. If A = (aij)m×n and B = (bij)m×n are matrices in the space Mm,n(R), is the function

(A, B) =
n∑

i=1

m∑

j=1

aijbij

an inner product?

20. In the space P2(z) of complex polynomials of degree less than or equal to two, is the function

(a0 + a1z + a2z
2, b0 + b1z + b2z

2) = a0b0 + a1b1 + a2b2,

an inner product?

21. Show that if u and w are vectors in a finite-dimensional, inner product space and (u,v) = (w,v) for
every vector v in the space, then u = w.

Answers

3. No 4. Yes 5. No 6. Yes 7. Yes 8. No 9. −50/81

14.(a) p0(x) = 1, p1(x) = x, p2(x) =
3x2 − 1

2
, p3(x) =

5x3 − 3x

2
(c) pn

(
2x

b − a
− b + a

b − a

)

15.(a) 1, 2x, 4x2 − 2, 8x3 − 12x 16.(a) 2x2 − 1, 4x3 − 3x 17.(b) Yes (c)
(

5c − 3b + 8d b
c d

)

18. Yes 19. Yes 20. Yes
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§5.4 Normed and Metric Spaces from Inner Product Spaces

We have seen that G2 and G3 are inner product spaces, normed spaces, and metric spaces.
The reason for this is that in these spaces, the inner product is used to define a norm, and the
norm is then used to define a metric. But this is not peculiar to these spaces. In any inner
product space, the inner product induces a norm and a metric, so that any inner product
space can be turned into a normed space and a metric space. To be precise, suppose that
V is an inner product space, and we define

‖v‖ =
√

(v,v). (5.25)

Ideally, we should prove that this definition of a norm satisfies properties 5.3. Properties
5.3a,b are obvious, but verification of triangle property 5.3c requires the Cauchy-Schwarz
inequality contained in the following theorem.

Theorem 5.2 Cauchy-Schwarz Inequality If u and v are vectors in an inner product space V , then

|(u,v)|2 ≤ (u,u)(v,v), (5.26a)

or, when a norm is defined by equation 5.25,

|(u,v)| ≤ ‖u‖‖v‖. (5.26b)

Equality holds when u = 0, or v = 0, or u and v are linearly dependent. Vertical bars on
the left are absolute values when V is a real space, and moduli when V is complex.

Proof The result is obviously valid if either u = 0 or v = 0 since both sides of the
inequality are equal to 0. When u and v are linearly dependent, then v = cu, where c is a
nonzero constant. In this case,

|(u,v)|2 = |(u, cu)|2 = |c(u,u)|2 = |c|2 |(u,u)|2.

But,

(v,v) = (cu, cu) = |c|2(u,u),

and therefore

|(u,v)|2 = (u,u)(v,v).

Consider now the case when neither u nor v is the zero vector, and they are not linearly
dependent. We verify the inequality when V is a real space. For every scalar t, the vector
u + tv is nonzero, and therefore

0 < (u + tv,u + tv)
= (u,u) + (u, tv) + (tv,u) + (tv, tv)
= (u,u) + t(u,v) + t(v,u) + t2(v,v)
= (u,u) + 2t(u,v) + t2(v,v).

Because this quadratic expression in t is always positive, it follows that the discriminant
must be negative; that is,

0 > 4t2(u,v)2 − 4t2(u,u)(v,v) = 4t2[(u,v)2 − (u,u)(v,v)].

Hence,

(u,v)2 < (u,u)(v,v).

We can now verify that norm 5.25 induced by the inner product does indeed satisfy the
triangle inequality.
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‖u + v‖2 = (u + v,u + v) (by equation 5.25)
= (u,u) + (u,v) + (v,u) + (v,v) (by properties 5.17a,b)
= ‖u‖2 + 2(u,v) + ‖v‖2 (by property 5.17c)
≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 (by the Cauchy-Schwarz inequality 5.26b)
= (‖u‖ + ‖v‖)2.

The triangle inequality results when we take positive square roots of this equality. Thus,
equation 5.25 does indeed turn an inner product space into a normed space. A metric on V
is

d(u,v) = ‖u− v‖. (5.27)

This turns V into a metric space. (You should prove that this definition of a metric satisfies
properties 5.13.) In most instances, we continue to call V an inner product space, rather than
a normed space or a metric space. We do this because most of our discussions depend on a
vector space having an inner product as well as norms (and perhaps metrics), and normed
spaces (and metric spaces ) need not have inner products. Throughout the remainder of
these notes, we assume that in an inner product space, norms and metrics are those induced
by the inner product.

Example 5.15 Prove that

‖f(x)‖ =

√∫ b

a

[f(x)]2dx

defines a norm on the space of functions C0[a, b].

Solution Properties 5.3a,b are straightforward. But to verify the triangle inequality 5.3c
directly is not easy. Instead, consider showing that

(
f(x), g(x)

)
=

∫ b

a

f(x)g(x) dx

is an inner product on C0[a, b]. It is not difficult to show that it satisfies properties 5.17, so
that it is indeed an inner product. But the inner product induces the norm

‖f(x)‖ =
√(

f(x), f(x)
)

=

√∫ b

a

[f(x)]2 dx

on the space, and this is what was to be proved.•

Here is a very simple example of using the Cauchy-Schwarz inequality in a problem that
can be solved with multi-variable calculus, but with much more difficulty.

Example 5.16 Find the largest and smallest values of the function f(x, y, z) = 4x − 5y + 2z on the sphere
x2 + y2 + z2 = 1.

Solution If we apply the Cauchy-Schwarz inequality to the vectors 〈x, y, z〉 and 〈4− 5, 2〉
in G3, we obtain

|
(
〈4,−5, 2〉, 〈x, y, z〉

)
| ≤ ‖〈4,−5, 2〉‖ ‖〈x, y, z〉‖,

or,

|4x − 5y + 2z| ≤
√

16 + 25 + 4
√

x2 + y2 + z2 = 3
√

5.
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Hence −3
√

5 ≤ 4x − 5y + 2z ≤ 3
√

5. Maximum and minimum values are attained when
vectors 〈x, y, z〉 and 〈4,−5, 2〉 are linearly dependent; that is when the vector from the
origin to the point (x, y, z) on the sphere is parallel to 〈4,−5, 2〉. This occurs at the points
(±4/(3

√
5),∓5/(3

√
5),±2/(3

√
5)).•

Equation 5.25 expresses the norm of a vector in terms of the inner product of the vector
with itself. The following result expresses the inner product of two vectors in terms of the
norms of the vectors.

Theorem 5.3 If v and w are vectors in an inner product space, then

(v,w) =
1
2
[
‖v + w‖2 − ‖v‖2 − ‖w‖2

]
. (5.28)

Proof

‖v + w‖2 − ‖v‖2 − ‖w‖2 = (v + w,v + w) − (v,v) − (w,w)
= (v,v) + (v,w) + (w,v) + (w,w) − (v,v) − (w,w)
= 2(v,w).•

Orthonormal Vectors

In G3, the natural basis {̂i, ĵ, k̂} has a special property not shared by bases in spaces that
do not have an inner product. The vectors are mutually perpendicular and all have length
one. In Section 5.3, we generalized the concept of perpendicularity to orthogonality. Two
vectors u and v in an inner product space are orthogonal if their inner product vanishes,
(u,v) = 0. In the following definition, we introduce the adjective to describe orthogonal
vectors that also have length one.

Definition 5.6 A set of nonzero vectors {v1,v2, . . . ,vm} in an inner product space is said to be orthonor-
mal if every vector is orthogonal to every other vector, and each vector has unit norm. This
is represented algebraically by

(vj ,vk) = δjk. (5.29)

The symbol δjk is called the Kronecker delta; it has value zero when j 6= k, and value 1
when j = k.

Given an orthogonal set of vectors {v1,v2, . . . ,vm}, it is easy to construct an orthonor-
mal set, simply divide each vector by its norm; that is, replace vj with

v̂j =
vj

‖vj‖
. (5.30)

We say that we have normalized the vectors.

Example 5.17 In Example 5.11 of Section 5.3, we showed that the vectors p1(x) = 1 − x + 3x2 and
p2(x) = −1 +2x +x2 are orthogonal in P2(x) with respect to the inner product in Example
5.8. Normalize the vectors.

Solution Since squares of the norms of the polynomials are

‖1 − x + 3x2‖2 = (1)2 + (−1)2 + (3)2 = 11 and ‖ − 1 + 2x + x2‖2 = (−1)2 + (2)2 + (1)2 = 6,

normalized vectors are
1√
11

(1 − x + 32) and
1√
6
(−1 + 2x + x2).•

Example 5.18 In Example 5.12 of Section 5.3, we showed that the set of functions
{
sin

nπx

L

}
, where n ≥ 1

is an integer, are orthogonal on the interval 0 ≤ x ≤ L with respect to the inner product
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(
f(x), g(x)

)
=

∫ L

0

f(x)g(x) dx.

Normalize the functions.

Solution The square of the norm of the nth function is

∥∥∥sin
nπx

L

∥∥∥
2

=
∫ L

0

sin2 nπx

L
dx =

∫ L

0

1
2

(
1 − cos

2nπx

L

)
dx

=
1
2

{
x − L

2nπ
sin

2nπx

L

}L

0

= L.

Consequently, an orthonormal set is
{

1√
L

sin
nπx

L

}
.•

EXERCISES 5.4

1. With the inner product of Example 5.18, show that the set of functions
{
1, cos

nπx

L

}
(n ≥ 1 an integer)

is orthogonal. These are the functions forming the basis for Fourier cosine series of even, 2L-periodic
functions. Normalize the functions.

2. In Exercise 14 in Section 5.3, the first four Legendre polynomials were shown to be orthogonal. Normalize
the functions.

3. In Exercise 15 in Section 5.3, the first four Hermite polynomials were shown to be orthogonal. Normalize
the functions. You will need the fact that

∫ ∞

−∞
e−x2

dx =
√

π.

4. In Exercise 16 in Section 5.3, the first four Chebyshev polynomials were shown to be orthogonal. Nor-
malize the functions.

5. Find largest and smallest values for the function f(x, y, z) = 3x+10y−2z on the sphere x2 +y2 +z2 = 5.

6. Find largest and smallest values for the function f(x, y, z) = 3x + 2y − 5z on the surface x2 − 2x + y2 +
4y + z2 − 10z + 24 = 0.

7. Find largest and smallest values for the function f(x, y, z) = 2x−y+5z on the ellipsoid 3x2+4y2+7z2 = 4.

8. In E3, the parallelogram law states that

‖u + v‖2 + ‖u− v‖2 ≤ 2‖u‖2 + 2‖v‖2.

Verify that it is valid for norms in any inner product space (although it loses its geometric interpretation).

9. (a) Verify that when v and w are vectors in a real, inner product space, then

‖v + w‖2 = ‖v‖2 + 2(v,w) + ‖w‖2.

(b) Is this is valid in a complex, inner product space? If not, what is its replacement?

10. Verify that when v and w are orthogonal vectors in an inner product space, then

‖v + w‖2 = ‖v‖2 + ‖w‖2.

11. In E2 and E3, the angle θ between two vectors v1 and v2 is defined by

cos θ =
v1 · v2

‖v1‖‖v2‖
.
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We can do the same thing in any real inner product space, although there is no geometric visualization
of the angle. We simply replace the dot product with the inner product

cos θ =
(v1,v2)
‖v1‖‖v2‖

.

This only makes sense if the right side is between ±1. How can we be sure that this is true?

12. Use the Cauchy-Schwarz inequality to prove that for any n real numbers r1, . . . , rn,

(r1 + r2 + · · · + rn)2 ≤ n(r2
1 + · · · + r2

n).

13. (a) Show that for any three real numbers r1, r2, and r3,

r1r2 + r2r3 + r3r1 ≤ r2
1 + r2

2 + r2
3 .

(b) Show that the result in part (a) is not always true for more than three numbers.

14. A metric on a vector space is said to be translation invariant if it satisfies

d(u + w,v + w) = d(u,v).

Verify that when a metric is induced by a norm, then this property is always satisfied.

15. Show that when V is a normed linear space, then

d(u,v) =
‖u− v‖

1 + ‖u− v‖

is a metric. With this metric, all distances are less than one.

Answers

1.
{

1√
2L

,
1√
L

cos
nπx

L
,

1√
L

sin
nπx

L

}
2.

1√
2
,

√
3x√
2

,

√
5

2
√

2
(3x2 − 1),

√
7

2
√

2
(5x3 − 3x)

3.
1

π1/4
,

√
2x

π1/4
,

2x2 − 1√
2π1/4

,
2x3 − 3x√

3π1/4
4.

1√
π

,

√
2
π

x,

√
2
π

(2x2 − 1),

√
2
π

(4x3 − 3x),

5. ±
√

565 6. −26± 2
√

57 7. ±
√

433/21 9.(b) ‖v + w‖2 = ‖v‖2 + (v,w) + (w,v) + ‖w‖2

11. The Cauchy-Schwarz inequality guarantees it.
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§5.5 Orthogonal Complements and Orthogonal Components of Vectors

In Section 1.7, we learned how to take vector components along subspaces of a vector space
when the space is the direct sum of two subspaces. In this section, we specialize this
operation to the situation where every vector in one subspace is orthogonal to every vector
in the other subspace.

Orthogonal Complements

The following definition describes what it means for one subspace of a vector space to be
the orthogonal complement of another subspace.

Definition 5.7 Let W be a subspace in an inner product space V . The orthogonal complement of W ,
denoted by W⊥, is the set of vectors in V that are orthogonal to every vector in W .

According to the following theorem, W⊥ is a subspace of V .

Theorem 5.4 The orthogonal complement W⊥ of a subspace W in an inner product space V is a subspace
of V .

Proof Suppose that u and v are any two vectors in W⊥, and a is a scalar. If w is any
vector in W , then

(w,u + v) = (w,u) + (w,v) = 0, (w, au) = a(w,u) = 0.

This shows that u + v and au are both in W⊥; that is, W⊥ is closed under vector addition
and scalar multiplication, and must be a subspace of V .

In G3, the orthogonal complement of the subspace of vectors along the x-axis is all
vectors in the yz-plane. The orthogonal complement of vectors (x1,−x1, x3) in E3 are
vectors of the form (w1, w1, 0). This is obvious once you see it; try deriving it.

Example 5.19 Let W be the subspace of a 4-dimensional inner product space spanned by the vectors
u = (1, 1, 1, 1) and v = (1, 2, 3, 4). Find a basis for W⊥.

Solution We need two vectors orthogonal to u and v, because, if a vector is orthogonal to
these vectors, it is orthogonal to every linear combination of them. If (a, b, c, d) is orthogonal
to u and v, then

0 =
(
(a, b, c, d), (1, 1, 1, 1)

)
= a + b + c + d, 0 =

(
(a, b, c, d), (1, 2, 3, 4)

)
= a + 2b + 3c + 4d.

These can be solved for a and b in terms of c and d, a = c + 2d, b = −2c − 3d. If we set
c = 0 and d = 1, we obtain the vector (2,−3, 0, 1), and if we set c = 1 and d = 0, we get
(1,−2, 1, 0). These two vectors are a basis for W⊥.•

The following result provides a superior way to find orthogonal complements.

Theorem 5.5 The orthogonal complement of the row space of a matrix is the null space of the matrix.

Proof Let A be an m×n matrix. A vector v is in the orthogonal complement of the row
space of the matrix if the (standard) inner product of v with every row of A is zero. But
the product Av of matrices yields the m inner products of v with the rows of A. Hence, v
is orthogonal to every row of A if Av = 0; that is, v is in the null space of the matrix.

What this means is that to find the orthogonal complement of a subspace W of a vector
space, find the null space of a matrix whose rows are a basis for W .

Example 5.20 Find a basis for the orthogonal complement of the subspace W in Example 5.19.

Solution The reduced row echelon form for the matrix
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(

1 1 1 1
1 2 3 4

)
is

(
1 0 −1 −2
0 1 2 3

)
.

Components (x1, x2, x3, x4) of vectors in the null space satisfy

x1 = x3 + 2x4, x2 = −2x3 − 3x4.

Vectors in W⊥ are therefore of the form



x3 + 2x4

−2x3 − 3x4

x3

x4


 = x3




1
−2
1
0


 + x4




2
−3
0
1


 .

In other words, W⊥ is spanned by the vectors (1,−2, 1, 0) and (2,−3, 0, 1).•

Since a subspace W and its orthogonal complement W⊥ have only the zero vector in
common, it seems reasonable to expect that a vector space can be thought of as the direct
sum W ⊕ W⊥. According to the corollary to Theorem 1.18 in Section 1.7, this will be the
case if we can show that every vector in the space can be expressed as the sum of a vector
from W and a vector from W⊥. The following discussion provides us with the tool to do
this.

Orthogonal Components of Vectors

In Section 1.7, we defined subspace components of vectors. A special case of this is when
the subspaces are orthogonal complements. The present discussion shows how to take what
are called orthogonal components of a vector. We begin with the familiar space G2.

Suppose that w is a fixed vector in G2, and v is any other vector in the space (Figure
5.1). Geometrically, we can decompose v into a vector along w and a vector u perpendicular
to w by dropping a perpendicular from the tip of v to w, extended if necessary. Vector v
is then the sum of u and a scalar multiple of λw of w.

x

y
v

w

u

l
q

w

x

y
v

w

Orthogonal component of     along
or,    Orthogonal projection of     onto

v
v

w
w

u

Figure 5.1 Figure 5.2

If ŵ denotes a unit vector in the direction of w, then the length of this scalar multiple is

‖λw‖ = ‖v‖ cos θ = ‖v‖‖ŵ‖ cos θ = ŵ · v =
w · v
‖w‖

.

To be specific, then,

v = u +
w · v
‖w‖

ŵ = u +
w · v
‖w‖2

w. (5.31)

What we have done is express every vector v in G2 as the sum of two vectors

v = u + r, where r =
w · v
‖w‖2

w. (5.32)

Vector r is in the subspace W of vectors along w, and u is in the subspace W⊥ of vectors
perpendicular to W . This shows that G2 is the direct sum W⊕W⊥, and in the terminology of
Section 1.7, vector r is the vector component of v along the subspace W as determined by the
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subspace W⊥. We shorten this description and call
w · v
‖w‖2

w the orthogonal component

of v along w (or the subspace spanned by w). It is also called the orthogonal projection
of v onto w (Figure 5.2), denoted by

Oprojwv =
w · v
‖w‖2

w. (5.33)

The following theorem indicates that we can do the same thing in any inner product
space, real or complex.

Theorem 5.6 If w is a fixed vector in an inner product space V , and v is any other vector in the space,
then v can expressed in the form

v = u + r, (5.34a)

where u is orthogonal to w, and r is the orthogonal component of v along w,

r =
(w,v)
‖w‖2

w. (5.34b)

Proof Since r is uniquely defined by equation 5.34b, all that we need show is that the
vector u defined by equation 5.34a is orthogonal to w. If we solve for u and take inner
products with w, we get

(w,u) =
(
w,v − (w,v)

‖w‖2
w

)
= (w,v) − (w,v)(w,w)

‖w‖2
= (w,v) − (w,v) = 0.

This implies that u is orthogonal to w.

It is worthwhile noticing that had we taken the vectors w and u in the reverse order in
the proof, the calculation would have gone as follows:

(u,w) =
(
v −

(w,v)
‖w‖2

w,w
)

= (v,w) −
(w,v)(w,w)

‖w‖2
= (v,w) − (v,w) = 0.

Two points need to be stressed about this result:
1. Space V need not be 2-dimensional. When V has dimension n > 2, vector u is in the

(n − 1)-dimensional subspace W⊥, where W is the subspace of multiples of w.
2. When the vector space is real, the order of v and w in the inner product defining the

orthogonal component r is immaterial. When the space is complex, however, it is crucial
that the order specified be maintained. Suppose for instance that we wrote the inner product
in the reverse order, and attempt to show that u as defined by equation 5.34 is orthogonal
to w as in Theorem 5.6,

(w,u) =
(
w,v −

(v,w)
‖w‖2

w
)

= (w,v) −
(v,w)(w,w)

‖w‖2
= (w,v) − (v,w).

In a complex space, the inner product is not symmetric, so that this does not vanish, and
the vectors are not orthogonal.

Theorem 5.6 shows that a vector v can always be expressed as the sum of a vector along
a given vector w and a vector orthogonal to w. We now generalize this result to show that
vector w can be replaced by a set of orthogonal vectors.

Theorem 5.7 If {w1,w2, . . . ,wm} is a set of orthogonal vectors in an inner product space V , and v is any
vector in the space, then v can be expressed in the form

v = u + r, (5.35a)
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where u is orthogonal to every vector in the subspace spanned by the wj , and r is the sum
of the orthogonal components of v along the wj ; that is,

r =
m∑

j=1

(wj ,v)
‖wj‖2

wj . (5.35b)

Proof Since r is uniquely defined by equation 5.35b, all that we need show is that the
vector u defined by equation 5.35a is orthogonal to each of the wj . If we solve for u and
take inner products with wk, we get

(wk,u) =


wk,v −

m∑

j=1

(wj ,v)
‖wj‖2

wj


 = (wk,v) −

m∑

j=1

(wj ,v)(wk ,wj)
‖wj‖2

.

Since the wj are orthogonal, (wk,wj) equals zero whenever j 6= k. Hence,

(wk,u) = (wk,v) − (wk,v)(wk ,wk)
‖wk‖2

= (wk,v) − (wk,v) = 0.

Thus, u is orthogonal to each of the wj .

Since r is a linear combination of the vectors in the set {w1,w2, . . . ,wm}, it is therefore
a vector in the subspace W spanned by the wj . Vector u being orthogonal to each of the
wj is in W⊥. This verifies that V = W ⊕W⊥. Vector r is the vector component of v along
W as determined by W⊥. We call it the orthogonal component of v along the subspace
W spanned by the wj , or, the orthogonal projection of v onto subspace W ,

OProjW v =
m∑

j=1

(wj ,v)
‖wj‖2

wj . (5.36)

Example 5.21 In E2, find the orthogonal component of (4,−1) along (2, 3).

Solution The orthogonal component of (4,−1) along (2, 3) is
(
(2, 3), (4,−1)

)

13
(2, 3) =

5
13

(2, 3).•

Example 5.22 If all three vectors u = (1, 2, 5), v = (−2, 1, 4), and w = (1,−2, 1) are in E3, find the
orthogonal component of u along the subspace spanned by v and w.

Solution Since v and w are orthogonal, the orthogonal component is
(
(−2, 1, 4), (1, 2, 5)

)

21
(−2, 1, 4) +

(
(1,−2, 1), (1, 2, 5)

)

6
(1,−2, 1) =

20
21

(−2, 1, 4) +
1
3
(1,−2, 1)

=
1
21

(−33, 16, 87).•

The Need for Orthogonal Bases

In Chapter 4, we demonstrated the value of eigenvalue bases in a number of applications.
There are advantages to using orthogonal bases for inner product spaces, or even better,
orthonormal bases. We demonstrate with three situations.

Scalar Components of Vectors in Inner Product Spaces

If v = vxî + vy ĵ + vz ĵ is a vector in E3, its (scalar) components can be obtained from
inner products of the vector with the basis vectors,

vx = v · î = (v, î), vy = v · ĵ = (v, ĵ), vz = v · k̂ = (v, k̂). (5.37)
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The vectors b1 = 3̂i, b2 = −2ĵ, and b3 = 4k̂ also form a basis for E3; it is orthogonal,
but not orthonormal. To obtain formulas for the components of a vector v = v1b1 + v2b2 +
v3b3, we can once again take dot products of v with the basis vectors. When we do so with
b1, we obtain

v · b1 = v1(b1 · b1) = v1‖b1‖2 =⇒ v1 =
v · b1

‖b1‖2
.

When we write this with inner product notation, and include results for v2 and v3, we obtain

v1 =
(v,b1)
‖b1‖2

, v2 =
(v,b2)
‖b2‖2

,
(v,b3)
‖b3‖2

. (5.38)

These equations are more complicated than 5.37 due to the fact that the basis {b1,b2,b3}
is orthogonal, but not orthonormal.

Now consider the basis consisting of the vectors d1 = 3̂i − 2ĵ, d2 = î − 2k̂, and d3 =
î − 2ĵ + k̂. These vectors are not orthogonal and they do not have length one. If we take
dot products of a vector v = v1d1 + v2d2 + v2d3 with the basis vectors, we obtain

v · d1 = v1(d1 · d1) + v2(d1 · d2) + v3(d1 · d3),

v · d2 = v1(d2 · d1) + v2(d2 · d2) + v3(d2 · d3),

v · d3 = v1(d3 · d1) + v2(d3 · d2) + v3(d3 · d3).

(5.39)

We have a system of three equations to solve for the components of v. These are definitely
more complicated than equations 5.37 and 5.38.

What we have just seen in E3 occurs in every finite-dimensional inner product space V .
If {b1,b2, . . . ,bn} is an orthonormal basis for the space, and v = (v1, v2, . . . , vn) are the
components of any vector, with respect to this basis, then

vi = (v,bi). (5.40)

If {d1,d2, . . . ,dn} is only an orthogonal basis, then

(v,di) = vi(di,di) =⇒ vi =
(v,di)
(di,di)

=
(v,di)
‖di‖2

. (5.41)

If the basis is not orthogonal, then taking inner products of the vector with the basis vectors
yields a system of n equations in the n components of the vector.

Linear Operators on Inner Product Spaces

When L is a linear operator on an n-dimensional space V , its associated matrix, relative
to some basis {b1,b2, . . . ,bn} has columns that are images of the bi under L. When V is
an inner product space, and the basis is orthonormal, we can give a formula for the entries
of the matrix. We can demonstrate this with an operator on G3 such as

L :
v′1 = 3v1 − 2v2 + 4v3,

v′2 = −v1 + v2,

v′3 = 2v1 − 2v2 + 3v3.

Because no mention of basis has been made, we assume that these are natural components
of v and v′. The matrix associated with the operator is

A =




3 −2 4
−1 1 0
2 −2 3


 .

The first column is the image of î under L; that is
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


3
−1
2


 = L(̂i).

Inner products of this vector with the basis vectors are the components of the vector,
(̂
i, L(̂i)

)
= 3,

(̂
j, L(̂i)

)
= −2,

(
k̂, L(̂i)

)
= 4.

This is not a peculiarity of the first column; it is also valid for the second and third columns.
In other words, the (i, j)th entry of A is the inner product of the ith basis vector with the
image of the jth basis vector. That this result is valid for any linear operator on any finite-
dimensional inner product vector space (provided an orthonormal basis of the space is used
to find the matrix associated with the operator) is proved in the next theorem.

Theorem 5.8 The (i, j)th entry of the matrix A associated with a linear operator L on an n-dimensional,
inner product space V with orthonormal basis {b1,b2, . . . ,bn} is

aij =
(
bi, L(bj)

)
. (5.42)

Proof The jth column of A is the image L(bj) of the jth basis vector bj . But according
to equation 5.40, the ith component of this vector is

(
bi, L(bj)

)
.

The Matrix Associated With Inner Products

The action of a linear transformation between finite-dimensional vector spaces can be ac-
complished with the matrix associated with the transformation. The same can be done with
inner products; that is, we can associate matrices with inner products on finite-dimensional
vector spaces so that taking the inner product reduces to matrix multiplication. This is
very simple when the basis is orthonormal, not quite so simple when the basis is orthogonal,
and not at all simple when the basis is not orthogonal. We demonstrate with some simple
examples. The inner product of two vectors u = uxî + uy ĵ + uzk̂ and v = vxî + vy ĵ + vzk̂
in E3 is

(u,v) = uxvx + uyvy + uzvz.

We can use matrices to write this in the form

(u,v) = (ux, uy, uz)




vx

vy

vz


 = (ux, uy, uz)




1 0 0
0 1 0
0 0 1







vx

vy

vz


 . (5.43)

The 3 × 3 identity matrix I3 is called the matrix of the inner product associated with
the natural basis. In En, the matrix associated with the natural basis is the n × n identity
In. This is not a peculiarity of natural bases. The following theorem shows that In is the
matrix associated with any orthonormal basis in a real vector space.

Theorem 5.9 Let V be a real, n-dimensional inner product space with orthonormal basis {b1,b2, . . . ,bn}.
If the components of two vectors with respect to this basis are u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn), then their inner product is

(u,v) =
n∑

i=1

uivi. (5.44)

Proof Using the fact that an inner product is linear in its arguments, we can write that

(u,v) =




n∑

i=1

uibi,

n∑

j=1

vibj


 =

n∑

i=1

n∑

j=1

uivj(bi,bj).

Since the basis is orthonormal, (bi,bj) = δij , and therefore
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(u,v) =
n∑

i=1

uivi.

Because we can write equation 5.9 in the form

(u,v) = (u1, u2, . . . , un)In




v1

v2
...

vn


 , (5.45)

the matrix associated with the orthonormal basis is In.
Analogous to Theorem 5.9 for real inner product spaces, we have the following theorem

for complex inner product spaces.

Theorem 5.10 If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are components of vectors with respect to an
orthonormal basis {b1,b2, . . . ,bn} in a complex, n-dimensional inner product space, their
inner product is

(u,v) =
n∑

j=1

ujvj . (5.46)

Proof Using properties 5.19 for the inner product, we can write that

(u,v) =




n∑

j=1

ujbj ,

n∑

k=1

vkbk


 =

n∑

j=1

n∑

k=1

ujvk(bj ,bk).

Since the basis is orthonormal, (bj ,bk) = δjk , and therefore

(u,v) =
n∑

j=1

ujvj .

This shows that the matrix associated with an orthonormal basis is once again the
identity,

(u,v) = (u1, u2, . . . , un)In




v1

v2
...

vn


 . (5.47)

The vectors b1 = 3̂i, b2 = −2ĵ, and b3 = 4k̂ also form a basis for E3; the vectors are
orthogonal, but not orthonormal. The inner product of two vectors u = u1b1 +u2b2 +u3b3

and v = v1b1 + v2b2 + v3b3 is

(u,v) = (u1b1 + u2b2 + u3b3, v1b1 + v2b2 + v3b3)
= u1v1(b1,b1) + u1v2(b1,b2) + u1v3(b1,b3)

+ u2v1(b2,b1) + u2v2(b2,b2) + u2v3(b2,b3)
+ u3v1(b3,b1) + u3v2(b3,b2) + u3v3(b3,b3)

= 9u1v1 + 4u2v2 + 16u3v3.

We can write this in matrix form as

(u,v) = (u1, u2, u3)




9 0 0
0 4 0
0 0 16







v1

v2

v3


 .
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The 3 × 3 diagonal matrix is the matrix associated with the orthogonal basis.
Now consider the basis consisting of the vectors d1 = 3̂i − 2ĵ, d2 = î − 2k̂, and d3 =

î − 2ĵ + k̂. These vectors are not orthogonal and they do not have length one. The inner
product of two vectors u = u1d1 + u2d2 + u3d3 and v = v1d1 + v2d2 + v3d3 is

(u,v) = (u1d1 + u2d2 + u3d3, v1d1 + v2d2 + v3d3)
= u1v1(d1,d1) + u1v2(d1,d2) + u1v3(d1,d3)

+ u2v1(d2,d1) + u2v2(d2,d2) + u2v3(d2,d3)
+ u3v1(d3,d1) + u3v2(d3,d2) + u3v3(d3,d3)

= u1(13v1 + 3v2 + 7v3) + u2(3v1 + 5v2 − v3) + u3(7v1 − v2 + 6v3).

This could be simplified further, but by leaving it in this form, we can write it in matrix
form

(u,v) = (u1, u2, u3)




13 3 7
3 5 −1
7 −1 6







v1

v2

v3


 .

This time the matrix is not diagonal, but in all cases, the matrix is symmetric. When the
basis is orthogonal, the matrix is diagonal; and when the basis is orthonormal, the matrix
is the identity. If we denote the matrix by G, then its (i, j)th entry is the inner product of
the ith and jth basis vectors. If they are denoted by bi and bj , then

G =
(
(bi,bj)

)
. (5.48)

These discussions have shown three advantages in using an orthogonal basis for an inner
product space, or even better, an orthonormal one. In Section 5.6, we give a systematic
procedure on how to develop an orthonormal basis from any given basis. The procedure is
not always necessary however, and as we shall see, it does not always lead to the simplest
orthonormal basis.

Example 5.23 Find an orthonormal basis for G3 if it must contain the vector (1,−2, 3)/
√

14.

Solution We need two orthogonal vectors that are also orthogonal to (1,−2, 3); they can
always be normalized later. Let two such vectors be (a, b, c) and (d, e, f). Orthogonality
requires

a − 2b + 3c = 0, d − 2e + 3f = 0, ad + be + cf = 0.

We have three equations, two linear and one nonlinear, in six unknowns. This would seem
to give plenty of freedom to make other demands. Suppose for instance that we demand
that b = 1, c = 0 and e = 1. The equations then reduce to

a − 2 = 0, d − 2 + 3f = 0, ad + 1 = 0 =⇒ a = 2, d = −
1
2
, f =

5
6
.

Thus, the vectors (2, 1, 0) and (−1/2, 1, 5/6) are orthogonal to each other, and both are
orthogonal to (1,−2, 3). An orthonormal basis for G3 that contains (1,−2, 3)/

√
14 is

(1,−2, 3)√
14

,
(2, 1, 0)√

5
,

(−3, 6, 5)√
70

.•

EXERCISES 5.5

1. Find scalar components of the polynomial x3 + 2x + 1, as a vector in P3(x), with respect to the basis of
polynomials in part (a) of Exercise 14 in Section 5.3.
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2. Find scalar components of the polynomial x3 + 2x2 + 1, as a vector in P3(x), with respect to the basis of
polynomials in part (a) of Exercise 16 in Section 5.3.

3. Find scalar components of the polynomial x3 + 2x2 −x, as a vector in P3(x), with respect to the basis of
polynomials in part (a) of Exercise 15 in Section 5.3.

4. Find an orthonormal basis for G3 that contains vectors of unit length in the directions of the vectors
(3, 5, 1) and (2,−2, 4).

5. If W is the subspace of E5 spanned by the vectors (1,−3, 5, 0, 5), (−1, 1, 2,−2, 3), and (0,−1, 4,−1, 5),
find a basis for W⊥.

In Exercises 6–8 find the orthogonal component of vector v along the subspace spanned by w.
All vectors are in En for an appropriate value of n.

6. v = (2, 1); w = (4,−3)

7. v = (−1, 2, 5); w = (3, 2,−1)

8. v = (3,−2, 1, 4); w = (4, 5, 6, 7)

9. Find the orthogonal component of the vector 〈3, 2− 4〉 along the line 2x + y − 2z = 0, 3x − 2y + z = 0.

10. Find the orthogonal component of the vector (1,−2, 4) in R3 along the subspace spanned by the vectors
(3,−1, 4) and (1,−1,−1).

11. Find the orthogonal component of the vector (2− i, 1+ i) along the subspace of C2 spanned by the vector
(3 − 2i, 1− 4i).

Answers

1. (1, 13/5, 0, 2/5) 2. (2, 3/4, 1, 1/4) 3. (1, 1/4, 1/2, 1/8)
4. (3, 5, 1)/

√
35, (1,−1, 2)/

√
6, (11,−5,−8)/

√
210 5. (3, 1, 0,−1, 0), (4, 3, 2, 0,−1)

6. (4/5,−3/5) 7. (−6/7,−4/7, 2/7) 8. (8/7, 10/7, 12/7, 14/7)
9. 〈−9/122,−24/122,−21/122〉 10. (163/78,−37/78, 278/78)
11. (1/30)(27 + 8i, 29− 14i)



SECTION 5.6 197

§5.6 Gram-Schmidt Process

In Section 5.5 we saw advantages in using orthonormal bases for inner product spaces. It is
straightforward to convert an orthogonal basis into an orthonormal basis, divide each vector
by its norm. Theorems 5.6 and 5.7 provide a way to develop an orthonormal basis from a
basis that is not orthogonal. It is called the Gram-Schmidt process.

The Gram-Schmidt Process

We illustrate the process geometrically in E3, and then develop it in an arbitrary inner
product space. Suppose that we have a basis {v1,v2,v3} for E3 that we wish to convert
into an orthonormal basis. First we find an orthogonal basis; it can always be normalized
later to produce an orthonormal basis. Take w1 = v1 as the first vector in an orthogonal
basis. We use v2 to find a vector w2 orthogonal to w1. With equation 5.34b, we remove
the orthogonal component of v2 along w1,

w2 = v2 −
(w1,v2)
‖w1‖2

w1,

(see Figure 5.3). Now, we use v3 to find a vector w3 orthogonal to w1 and w2. With
equation 5.35b, we remove the component of v3 along the subspace spanned by w1 and w2,

w3 = v3 −
(w1,v3)
‖w1‖2

w1 −
(w2,v3)
‖w2‖2

w2,

(see Figure 5.4). The three vectors w1, w2, and w3 constitute an orthogonal basis. An
orthonormal basis can be obtained by normalizing these vectors.

x

y
v

w

w

w
v

1

11

2

2

2

v

=

Orthogonal projection
of onto

x

y
v

w

w

w
v

1

11

2

2

2

v

=

Orthogonal projection
of onto

Orthogonal projection of
onto plane spanned by

v3 w3

v3
w1 w2and

Figure 5.3 Figure 5.4

We do not normally use the Gram-Schmidt process to find an orthonormal basis for an
inner product space (as was done above); there are easier ways. It is useful when we require
an orthonormal basis of a subspace of an inner product space that is spanned by a given
set of vectors that are not orthogonal. Suppose then, that {v1,v2, . . . ,vm} is a basis for an
m-dimensional subspace of an n-dimensional inner product space V , where n > m. From
this basis, we will construct an orthogonal basis for the subspace. It is then a simple matter
of rescaling to obtain an orthonormal basis.

Step 1 Take w1 = v1 as the first vector in the orthogonal basis.

Step 2 To obtain the second vector in the orthogonal basis, subtract from v2 its orthogonal
component along w1 (or v1). If we call the resulting vector w2, and use equation 5.34b to
find the orthogonal component, we obtain

w2 = v2 −
(w1,v2)
‖w1‖2

w1.

This vector is orthogonal to w1. To confirm this, we note that

(w1,w2) =
(
w1,v2 −

(w1,v2)
‖w1‖2

w1

)
= (w1,v2) −

(w1,v2)
‖w1‖2

(w1,w1) = 0.
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Step 3 To obtain the third vector in the orthogonal basis, subtract from v3 its orthogonal
component along the subspace spanned by w1 and w2. If we call the resulting vector w3,
and use 5.35b to find the orthogonal component, we get

w3 = v3 −
[
(w1,v3)
‖w1‖2

w1 +
(w2,v3)
‖w2‖2

w2

]
.

This vector is orthogonal to w1 and w2. We can confirm orthogonality to w1 as follows:

(w1,w3) =
(
w1,v3 −

(w1,v3)
‖w1‖2

w1 −
(w2,v3)
‖w2‖2

w2

)

= (w1,v3) −
(w1,v3)
‖w1‖2

(w1,w1) −
(w2,v3)
‖w2‖2

(w1,w2)

= (w1,v3) − (w1,v3) = 0.

A similar calculation confirms orthogonality to w2.
Step 4 To obtain the fourth vector in the orthogonal basis, subtract from v4 its orthogonal
component along the subspace spanned by w1, w2, and w3. If we call the resulting vector
w4, and once again use 5.35b for the orthogonal component, we obtain

w4 = v4 −
[
(w1,v4)
‖w1‖2

w1 +
(w2,v4)
‖w2‖2

w2 +
(w3,v4)
‖w3‖3

w3

]
.

This vector is orthogonal to w1, w2, and w3.
Continuation of this process leads to m orthogonal vectors {w1,w2, . . . ,wm}. Since

these vectors are linear combinations of the vectors vj , they are in the subspace spanned by
the vj . Because orthogonal vectors are linearly independent, these vectors also constitute a
basis for the subspace. Division of each vector by its norm gives an orthonormal basis for
the subspace.

Here is an example in E4 to illustrate.

Example 5.24 Use the Gram-Schmidt process to construct an orthonormal basis for the subspace of E4

spanned by the linearly independent vectors v1 = (1, 2, 2, 0), v2 = (−2, 1, 4, 0), and v3 =
(3, 2, 0,−1).

Solution If we choose w1 = v1 as the first vector in an orthogonal basis, and use v2 to
construct a vector orthogonal to w1

w2 = v2 −
(w1,v2)
‖w1‖2

w1

= (−2, 1, 4, 0)−
(
(1, 2, 2, 0), (−2, 1, 4, 0)

)

9
(1, 2, 2, 0)

= (−2, 1, 4, 0)−
8
9
(1, 2, 2, 0) =

(
−

26
9

,−
7
9
,
20
9

, 0
)

.

Since the length of w2 at this point is irrelevant, we replace this w2 with w2 = (26, 7,−20, 0).
Let us check our calculations by seeing if w2 is indeed orthogonal to w1,

(
(1, 2, 2, 0), (26, 7,−20, 0)

)
= 26 + 14 − 40 + 0 = 0.

We now construct a vector orthogonal to w1 and w2,

w3 = v3 −
[
(w1,v3)
‖w1‖2

w1 +
(w2,v3)
‖w2‖2

w2

]

= (3, 2, 0,−1)−
(
(1, 2, 2, 0), (3, 2, 0,−1)

)

9
(1, 2, 2, 0)−

(
(26, 7,−20, 0), (3, 2, 0,−1)

)

1125
(26, 7,−20, 0)

= (3, 2, 0,−1)− 7
9
(1, 2, 2, 0)− 92

1125
(26, 7,−20, 0) =

(
12
125

,
−16
125

,
2
25

, 1
)

.
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Once again lengths are irrelevant and we replace this w3 with w3 = (12,−16, 10, 125), and
check whether it is orthogonal to w1 and w2,

(w1,w3) =
(
(1, 2, 2, 0), (12,−16, 10, 125)

)
= 0, (w2,w3) =

(
(26, 7,−20, 0), (12,−16, 10, 125)

)
= 0.

We now convert to an orthonormal basis by dividing each orthogonal vector by its norm,

ŵ1 =
w1

‖w1‖
=

1
3
(1, 2, 2, 0),

ŵ2 =
w2

‖w2‖
=

1
15

√
5
(26, 7,−20, 0),

ŵ3 =
w3

‖w3‖
=

1
5
√

645
(12,−16, 10, 125).•

The order in which vectors are used to produce orthogonal vectors by the Gram-Schmidt
process affects the outcome. Exercise 6 shows that a different set of orthonormal vectors is
obtained in Example 5.24 if vector (−2, 1, 4, 0) is used first.

Example 5.25 The vectors f(x) = 1−x and g(x) = 4x−x2 in the space P2(x) of real polynomials of degree
less than or equal to two on the interval 0 ≤ x ≤ 1 are not orthogonal with respect to the
inner product of Example 5.9. Use them to find an orthogonal basis on this interval for the
subspace spanned by the vectors.

Solution A vector (function) orthogonal to f(x) is

h(x) = g(x) −
(
f(x), g(x)

)

‖f(x)‖2
f(x),

where

‖f(x)‖2 =
∫ 1

0

(1 − x)2 dx =
1
3
, and (1 − x, 4x − x2) =

∫ 1

0

(1 − x)(4x − x2) dx =
7
12

.

Hence,

h(x) = 4x − x2 − 7/12
1/3

(1 − x) = −x2 +
23x

4
− 7

4
.

An orthogonal basis for the subspace is therefore {1− x, 7 − 23x + 4x2}.•

Any set of vectors in a vector space spans a subspace. We can use the Gram-Schmidt
process to replace the given vectors with an orthonormal basis for the subspace. As pre-
sented, the process requires a set of linearly independent vectors. This is not entirely true,
but it is the best way to start. In other words, we would initially replace the given set of
vectors with a linearly independent set. Here is an example to illustrate. When it is finished
we discuss what happens when we start with a set of vectors that is linearly dependent.

Example 5.26 Find an orthogonal basis for the subspace of E5 spanned by the vectors (1, 2, 3, 2,−5),
(3,−2, 4, 0,−1), and (−1, 6, 2, 4,−9).

Solution To determine whether the vectors are linearly independent, we row reduce

A =




1 2 3 2 −5
3 −2 4 0 −1
−1 6 2 4 −9


 to Arref =




1 0 7/4 1/2 −3/2
0 1 5/8 3/4 −7/4
0 0 0 0 0


 .

This shows that the vectors are linearly dependent, and a pair of vectors that span the
same subspace is (4, 0, 7, 2,−6) and (0, 8, 5, 6,−14). To find an orthogonal basis, we can use
(4, 0, 7, 2,−6) as one vector, and find a vector perpendicular to it using the Gram-Schmidt
process
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(0, 8, 5, 6,−14)−
(
(4, 0, 7, 2,−6), (0, 8, 5, 6,−14)

)

105
(4, 0, 7, 2,−6) =

4
105

(−131, 210,−98, 92,−171).

We take the second vector in the orthogonal basis to be (−131, 210,−98, 92,−171).•

Previous to this example, we suggested that it is not necessary to start with a set of
linearly independent vectors, but it is always best to do so. If we don’t, the Gram-Schmidt
process leads to the zero vector when it encounters a vector that is a linear combination of
previous vectors. We illustrate in the following very simple example, and discuss Example
5.26 in Exercise 25.

Example 5.27 Show that when the Gram-Schmidt process is applied to the vectors {̂i, î+ ĵ, î+2ĵ}, it leads
to the zero vector at the third stage.

Solution The vector orthogonal to î as produced by the Gram-Schmidt process is

v2 = (̂i + ĵ) − (̂i, î + ĵ)
1

î = ĵ,

as expected. The third vector should be the component of î+2ĵ orthogonal to î and ĵ, which
does not exist. The Gram-Schmidt process should therefore gives us the zero vector,

v3 = (̂i + 2ĵ) − (̂i, î + 2ĵ)
1

î− (̂i + 2ĵ, ĵ)
1

ĵ = 0.•

Example 5.28 Find an orthogonal basis for the kernel of the linear transformation with matrix

A =




1 −2 1 0
−3 2 2 5
−1 −2 4 5


 .

Solution We row reduce the matrix to find the kernel of the transformation,

Arref =




1 0 −3/2 −5/2
0 1 −5/4 −5/4
0 0 0 0


 .

If we denote components of vectors in the space by (v1, v2, v3, v4), then vectors in the kernel
satisfy

v1 −
3v3

2
− 5v4

2
= 0, v2 −

5v3

4
− 5v4

4
= 0.

Thus, the kernel consists of vectors of the form



v1

v2

v3

v4


 =




3v3/2 + 5v4/2
5v3/4 + 5v4/4

v3

v4


 =

v3

4




6
5
4
0


 +

v4

4




10
5
0
4


 .

A basis for the kernel is (6, 5, 4, 0) and (10, 5, 0, 4). We can use the Gram-Schmidt process
to replace the second vector by a vector orthogonal to v1 = (6, 5, 4, 0),

v2 = (10, 5, 0, 4)−
(
(6, 5, 4, 0), (10, 5, 0, 4)

)

36 + 25 + 16
(6, 5, 4, 0) = (10, 5, 0, 4)− 85

77
(6, 5, 4, 0)

=
4
77

(85,−10,−85, 77).

We therefore take (85,−10,−85, 77) as the second basis vector.•

There are many ways to produce an orthonormal basis for a vector space or subspace.
It is a question of what other demands are to be imposed on the basis. We just noted
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that if we want a basis for a subspace that is spanned by a given set of vectors, then the
Gram-Schmidt process replaces the given set with an orthonormal set that spans the same
space (or subspace). Suppose we want an orthonormal basis for E3, but we demand that it
contain a unit vector in the direction v1 = (1, 2, 2). We could proceed in various ways. One
way would be to introduce two additional vectors which along with (1, 2, 2) form a linearly
independent set, and then use the Gram-Schmidt process to construct an orthonormal set.
Here is an alternative procedure. All vectors (a, b, c) orthogonal to v1 must satisfy

0 =
(
(a, b, c), (1, 2, 2)

)
= a + 2b + 2c =⇒ a = −2b − 2c.

The are many choices for b and c, a simple one being b = 0 and c = 1, in which case a = −2,
and a vector orthogonal to v1 is v2 = (−2, 1, 0). All vectors (d, e, f) orthogonal to v1 and
v2 must satisfy

0 =
(
(d, e, f), (1, 2, 2)

)
= d + 2e + 2f, 0 =

(
(d, e, f), (−2, 1, 0)

)
= −2d + e.

All solutions of these can be expressed in the form e = 2d, f = −5d/2. If we choose d = 2,
then e = 4 and f = −5. A vector orthogonal to v1 and v2 is v3 = (2, 4,−5). Now that we
have an orthogonal set of vectors, we can re-scale for an orthonormal set,

v̂1 =
v1

|v1|
=

(1, 2, 2)√
6

, v̂2 =
v2

|v2|
=

(−2, 1, 0)√
5

, v̂3 =
v3

|v3|
=

(2, 4,−5)
3
√

5
.

Example 5.29 Show that with the inner product of Exercise 14 in Section 5.3, the Gram-Schmidt process
applied to the polynomials 1, x, x2, and x3 leads to the normalized Legendre polynomials
of Exercise 2 in Section 5.4.

Solution The norm of the function f0(x) = 1 is given by

‖f0(x)‖2 =
∫ 1

−1

12 dx = {x}1
−1 = 2.

A normalized function corresponding to 1 is therefore f̂0(x) =
1√
2
. Using the second poly-

nomial, a function orthogonal to f0(x) = x is

f1(x) = x − (1, x)
2

(1) = x − 1
2

∫ 1

−1

x(1) dx = x − 1
2

{
x2

2

}1

−1

= x.

Since the norm of this function is given by

‖f1(x)‖2 =
∫ 1

−1

x2 dx =
{

x3

3

}1

−1

=
2
3
,

a normalized function is f̂1(x) =
√

3x√
2

.

Using x2, a polynomial orthogonal to f0(x) and f1(x) is

f2(x) = x2 − (1, x2)
2

(1) − (x, x2)
2/3

(x) = x2 − 1
2

∫ 1

−1

x2(1) dx − 3x

2

∫ 1

−1

x(x2) dx

= x2 − 1
2

{
x3

3

}1

−1

− 3x

2

{
x4

4

}1

−1

= x2 − 1
3
.

Since the norm of this function is given by,

‖f2(x)‖2 =
∫ 1

−1

(
x2 − 1

3

)2

dx =
∫ 1

−1

(
x4 − 2x2

3
+

1
9

)
dx =

{
x5

5
− 2x3

9
+

x

9

}1

−1

=
8
45

,
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a normalized function is f̂2(x) =

√
45
8

(
x2 − 1

3

)
=

√
5

2
√

2
(3x2 − 1).

Using x3, a polynomial orthogonal to f0(x), f1(x), and f2(x) is

f3(x) = x3 − (1, x3)
2

(1) − (x, x3)
2/3

(x) − (x2, x3)
8/45

(x2)

= x3 − 1
2

∫ 1

−1

x3(1) dx − 3x

2

∫ 1

−1

x(x3) dx − 45x2

8

∫ 1

−1

x2(x3) dx

= x3 − 1
2

{
x4

4

}1

−1

− 3x

2

{
x5

5

}1

−1

− 45x2

8

{
x6

6

}1

−1

= x3 − 3x

5
.

Since the norm of this function is given by,

‖f3(x)‖2 =
∫ 1

−1

(
x3 −

3x

5

)2

dx =
∫ 1

−1

(
x6 −

6x4

5
+

9x2

25

)
dx =

{
x7

7
−

6x5

25
+

3x3

25

}1

−1

=
8

175
,

a normalized function is f̂3(x) =

√
175
8

(
x3 − 3x

5

)
=

√
7

2
√

2
(5x3 − 3x).•

The Gram-Schmidt process can be applied to complex vectors as well as real ones, but,
as we mentioned earlier, due to the fact that the inner product is not symmetric, we must
be careful in the order of vectors in the inner product. Here is an example.

Example 5.30 Use the Gram-Schmidt process to construct an orthonormal basis of C2 using the vectors
v1 = (1 + i, i) and v2 = (−i, 2− i).

Solution A vector orthogonal to v1 is

w2 = v2 −
(v1,v2)
‖v1‖2

v1

= (−i, 2 − i) −
(
(1 + i, i), (−i, 2− i)

)

‖(1 + i, i)‖2
(1 + i, i)

= (−i, 2 − i) − (1 − i)(−i) − i(2 − i)
|1 − i|2 + |i|2

(1 + i, i)

= (−i, 2 − i) +
2 + 3i

3
(1 + i, i)

=
1
3
(−1 + 2i, 3− i).

Since

‖(1 + i, i)‖2 = 3, ‖(−1 + 2i, 3− i)‖2 = | − 1 + 2i|2 + |3 − i|2 = 15,

an orthonormal basis is

v̂ =
1√
3
(1 + i, i), ŵ2 =

1√
15

(−1 + 2i, 3− i).•

Theorems 5.6 and 5.7 gave instances when a vector space is the direct sum of orthogonal
complements. The following theorem verifies that a vector space can be considered as the
direct sum of any pair of orthogonal complements.

Theorem 5.11 If W is a subspace in a finite-dimensional inner product space V , then V is the direct sum
W ⊕ W⊥ of W and and its orthogonal complement W⊥.

Proof Since W and W⊥ have only the zero vector in common, all that we need show is
that every vector v in V can be expressed in the form v = w1 +w2, where w1 is in W , and
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w2 is in W⊥ (see the corollary to Theorem 1.18). Since V is finite-dimensional, so also is W .
Any basis of W can be converted to an orthonormal one (by the Gram-Schmidt process, for
instance). According to Theorem 5.7, v can be expressed in the form v = u + r, where u is
orthogonal to every vector in the basis of W , and r is the sum of the orthogonal components
of v along the basis vectors of W ; that is, u is in W⊥ and r is in W .

EXERCISES 5.6

In Exercises 1–2 use the Gram-Schmidt process to construct an orthonormal basis for the
subspace of E3 spanned by the given vectors.

1. (1, 2,−4), (3, 1, 5) 2. (−1, 3, 7), (2,−5, 6)

In Exercises 3–4 use the Gram-Schmidt process to construct an orthonormal basis for the
subspace of E4 spanned by the given vectors.

3. (1, 0, 2, 2), (−1, 1, 1, 2), (0, 1, 1,−1) 4. (2, 2,−1.0), (3, 1, 2,−4), (3, 2, 1, 1)

5. Find an orthonormal basis for the subspace of E5 spanned by the vectors (−1,−1, 1, 0, 0), (0,−1, 0, 0, 1),
and (1,−1, 0, 1, 0).

6. Repeat Example 5.24 beginning with the vector (−2, 1, 4, 0), followed by (1, 2, 2, 0).

7. Repeat Exercise 1, but use the inner product
(
(x1, x2, x3), (y1, y2, y3)

)
= x1y1 + 2x2y2 + 3x3y3.

8. Use the inner product
(
(x1, x2, x3), (y1, y2, y3)

)
= x1y1 + 2x2y2 + x3y3/3 to construct an orthonormal

basis for the subspace of E3 spanned by the vectors (1, 0, 1) and (1, 1, 0).

9. Find an orthogonal basis for the subspace of E5 spanned by the vectors (1, 0,−1, 1, 1), (0, 1,−1, 1, 2), and
(0,−1, 2, 0, 4).

10. Find a basis for the orthogonal complement of the subspace spanned by the vectors (1,−2, 3,−4) and
(2, 3, 4,−1) in E4.

11. Find an orthogonal basis for the subspace in Exercise 10.

12. Find an orthonormal basis for the subspace of C4 spanned by the vectors (1, i,−1,−i), (1, 2i,−3,−4i),
and (4, 0,−2, 0).

In Exercises 13–20 find the orthogonal component of vector v along the subspace spanned by
the given set of vectors. All vectors are in En for an appropriate value of n.

13. v = (1, 2, 3); {(−2, 3, 7), (1,−4, 2)}

14. v = (1, 2, 3); {(−2, 3, 7), (1,−4, 3)}

15. v = (2,−2, 4, 1); {(1, 1, 2, 2), (−3,−3, 2, 1)}

16. v = (2,−2, 4, 1); {(1, 1, 2, 2), (−3,−3, 2, 2)}
17. v = (2, 3, 1,−4); {(1, 1, 1, 1), (−1, 2, 4,−5), (−5,−1, 3, 3)}

18. Find the orthogonal component of the vector 〈1,−2, 3〉 along the plane 2x − 3y + z = 0.

19. Show that with the inner product
(
p1(x), p2(x)

)
= a0b0 + a1b1 + a2b2 + a3b3 of two vectors p1(x) =

a0 +a1x+a2x
2 +a3x

3 and p2(x) = b0 +b1x+b2x
2 +b3x

3 in P2(x), the set {1, x, x2, x3} is an orthonormal
basis.

20. (a) Consider the space of polynomials P2(x) on the interval −1 ≤ x ≤ 1. Is the basis {1, x, x2} orthogonal
with respect to the inner product

(
p1(x), p2(x)

)
=

∫ 1

−1

p1(x)p2(x) dx.
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(b) Construct an orthonormal basis from the basis in part (a).

21. Repeat Exercise 20 but use the interval 0 ≤ x ≤ 1.

22. Rows of the matrix

A =




1 1 3 1 6
2 −1 0 1 −1
−3 2 1 −2 1
4 1 6 1 3




are vectors in E5 and columns are vectors in E4. Find bases for: (a) the row space of A, (b) the null
space of A, (c) the orthogonal complement of the row space of A, and (d) the column space of A.

23. The vectors v1 = (1, 1,−1, 1), v2 = (1, 0, 2, 1), and v3 = (−1, 0, 0, 1) are orthogonal in E4. Show that if
the Gram-Schmidt process is used to find a fourth orthogonal vector starting with any vector (a, b, c, d)
that is not in the span of {v1,v2,v3}, the same vector is obtained.

24. Find a simple orthonormal basis for the row space of the matrix



1 1 −1 −1
3 2 0 1
1 0 1 0


 .

25. Show if the Gram-Schmidt process is applied to the three given vectors in Example 5.26, the zero vector
is produced at the third stage.

26. Find the orthogonal component of the vector (2 − i, 1 + i, i) along the subspace of C3 spanned by the
vectors (1, 2, i) and (3 + i, 2 + 2i, 4).

27. Show that with the inner product of Exercise 15 in Section 5.3, the Gram-Schmidt process applied to the
polynomials 1, x, x2, and x3 leads to the normalized Hermite polynomials of Exercise 3 in Section 5.4.

28. Show that with the inner product of Exercise 16 in Section 5.3, the Gram-Schmidt process applied to the
polynomials 1, x, x2, and x3 leads to the normalized Chebyshev polynomials of Exercise 4 in Section 5.4.

Answers

1. (1, 2,−4)/
√

21, (26, 17, 15)/
√

1190 2. (−1, 3, 7)/
√

59, (143,−370, 179)/
√

189 390
3. (1, 0, 2, 2)/3, (−14, 9,−1, 8)/

√
342, (0, 1, 1,−1)/

√
3

4. (2, 2,−1, 0)/3, (5,−1, 8,−12)/(3
√

26), (21, 1, 44, 38)/(7
√

78)
5. (−1,−1, 1, 0, 0)

√
3, (1,−2,−1, 0, 3)/

√
15, (4,−3, 1, 5,−3)/(2

√
15)

6. (−2, 1, 4, 0)/
√

21, (37, 34, 10, 0)/(5
√

105), (12,−16, 10,−125)/(5
√

645)
7. (1, 2,−4)/

√
57, (224, 163, 73)/

√
119 301 8. (

√
3/2, 0,

√
3/2), (1/6, 2/3,−1/2)

9. (1, 0,−1, 1, 1), (−1, 1, 0, 0, 1), (1,−4, 5,−1, 5) 10. (2,−1, 0, 1), (−17, 2, 7, 0)
11. (2,−1, 0, 1), (−5,−4, 7, 6) 12. (1, i,−1,−i)/2, (3, i, 1, 3i)/(2

√
5), (1,−2i,−1, 0)/

√
6

13. (−1112, 1823, 3551)/1302 14. (−5773, 9152, 18629/6773
15. (−4,−4, 64, 55)/23 16. 5(0, 0, 1, 1)2 17. (55, 51, 33,−93)/23 18. (−8, 5, 51)/14
20.(a) No (b) 1/

√
2,

√
3/2x,

√
5(3x2 − 1)/(2

√
2)

21.(a) No (b) 1,
√

3(2x − 1),
√

5(6x2 − 6x + 1)
22.(a) (1, 0, 1, 0,−1), (0, 1, 2, 0, 3), (0, 0, 0, 1, 4) (b) (−1,−2, 1, 0, 0), (1,−3, 0,−4, 1)

(c) (−1,−2, 1, 0, 0), (1,−3, 0,−4, 1) (d) (1, 0, 0, 1), (0, 1, 0, 6), (0, 0, 1, 3)
23. (1,−3,−1, 1) 24. (1, 0, 0,−1)/

√
2, (5, 2, 0, 5)/(3

√
6), (1,−5, 9, 1)/(6

√
3)

26. (1/68)(141 + 29i, 210 + 76i, 55 + 78i)


