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CHAPTER 6 HERMITIAN, ORTHOGONAL, AND UNITARY OPERATORS

In Chapter 4, we saw advantages in using bases consisting of eigenvectors of linear opera-
tors in a number of applications. Chapter 5 illustrated the benefit of orthonormal bases.
Unfortunately, eigenvectors of linear operators are not usually orthogonal, and vectors in an
orthonormal basis are not likely to be eigenvectors of any pertinent linear operator. There
are operators, however, for which eigenvectors are orthogonal, and hence it is possible to
have a basis that is simultaneously orthonormal and consists of eigenvectors. This chapter
introduces some of these operators.

§6.1 Hermitian Operators

When the basis for an n-dimensional real, inner product space is orthonormal, the inner
product of two vectors u and v can be calculated with formula 5.48. If v not only represents
a vector, but also denotes its representation as a column matrix, we can write the inner
product as the product of two matrices, one a row matrix and the other a column matrix,

(u, v) = uTv.

If A is an n × n real matrix, the inner product of u and the vector Av is

(u, Av) = uT (Av) = (uT A)v = (AT u)Tv = (ATu, v). (6.1)

This result,

(u, Av) = (ATu, v), (6.2)

allows us to move the matrix A from the second term to the first term in the inner product,
but it must be replaced by its transpose AT . A similar result can be derived for complex,
inner product spaces. When A is a complex matrix, we can use equation 5.50 to write

(u, Av) = uT (Av) = (uT A)v = (ATu)Tv =

(

A
T
u

)T

v = (A
T
u, v). (6.3)

This is the complex counterpart of equation 6.2,

(u, Av) = (A
T
u, v), (6.4)

but this time, we must also take complex conjugates of entries in AT . We identify this
matrix in the following definition.

Definition 6.1 The Hermitian conjugate of a complex matrix A is the transpose of its complex conjugate

A
T
.

For example, the Hermitian conjugate of




1 + 2i 3 3 − i
2 − 3i 2i 1 + 6i

2 4 − 2i −6 + 7i



 is





1 − 2i 2 + 3i 2
3 −2i 4 + 2i

3 + i 1 − 6i −6 − 7i



 .

A real matrix is symmetric if it is equal to its transpose. The complex counterpart of
a symmetric matrix is contained in the next definition.

Definition 6.2 A square complex matrix A is said to be Hermitian if it is equal to its Hermitian conjugate,

A = A
T
. (6.5)

In a Hermitian matrix, entries on opposite sides of the diagonal are complex conjugates,
and diagonal entries are real (see Exercise 7). A square real matrix is Hermitian if it is
symmetric.
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If L is a linear operator on a complex, inner product space V , we can associate a complex
matrix A with L so that mapping a vector v can be written as matrix multiplication,

L(v) = Av.

We use Hermitian matrices to define Hermitian operators.

Definition 6.3 A linear operator H on a complex inner product space is said to be Hermitian if its matrix
is Hermitian.

We use the letter H to represent a Hermitian operator to distinguish that it is Hermitian.
The matrix A of a Hermitian operator satisfies equation 6.5, and for such an operator,
equation 6.4 implies that

(

u, H(v)
)

=
(

H(u), v
)

. (6.6)

Hermitian operators are the first of our operators for which eigenvectors are orthogonal.
This is proved in the following theorem.

Theorem 6.1 Eigenvalues of a Hermitian operator on an inner product space are real and eigenvectors
corresponding to distinct eigenvalues are orthogonal.

Proof Let λ and v be an eigenpair for a Hermitian operator H . Not out of necessity, but
to simplify calculations, suppose that v has length one. Then

λ = λ(v, v) (the length of v is one)

= (v, λv) (property 5.19b)

=
(

v, H(v)
)

(λ is an eigenvalue for H with eigenvector v)

=
(

H(v), v
)

(equation 6.6)

= (λv, v) (λ is an eigenvalue for H with eigenvector v)

= λ(v, v) (property 5.19a)

= λ (the length of v is one).

Hence, λ is real. Now suppose that v1 and v2 are eigenvectors corresponding to (real)
distinct eigenvalues λ1 and λ2. Then

λ1(v1, v2) = (λ1v1, v2) (λ1 is real and property 5.19a)

=
(

H(v1), v2

)

(λ1 is an eigenvalue for H with eigenvector v1)

=
(

v1, H(v2)
)

(equation 6.6)

= (v1, λ2v2) (λ2 is an eigenvalue for H with eigenvector v2)

= λ2(v1, v2). (property 5.19b)

Since λ1 6= λ2, this implies that (v1, v2) = 0, and the eigenvectors are orthogonal.

It is important to note that different eigenvectors corresponding to the same eigenvalue
are not usually orthogonal. Indeed, if v is an eigenvector of an operator, then so also is 3v,
and these vectors are certainly not orthogonal. When an eigenvalue has two, or more, linearly
independent eigenvectors, it is possible to have orthogonal eigenvectors corresponding to this
eigenvalue. Here are some examples to illustrate the theorem and this remark.

Example 6.1 The symmetric matrix corresponding to a Hermitian operator on a real inner product space
is

A =





2 1 −1
1 2 1
−1 1 2



 .
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Show that eigenvalues are real, and eigenvectors corresponding to different eigenvalues are
orthogonal.

Solution Eigenvalues are given by

0 = det(A − λI) = det





2 − λ 1 −1
1 2 − λ 1
−1 1 2 − λ



 = −λ(λ − 3)2.

Thus, λ = 0 and λ = 3 are the eigenvalues. Eigenvectors corresponding to λ = 0 are
v3(1,−1, 1). Eigenvectors corresponding to λ = 3 are v2(1, 1, 0) + v3(−1, 0, 1). If we take
the inner product of any eigenvector v1 = v(1,−1, 1) corresponding to λ = 0, and any
eigenvector v2 = u(1, 1, 0) + w(−1, 0, 1) corresponding to λ = 3, we obtain

(v1, v2) =
(

v(1,−1, 1), u(1, 1, 0)+ w(−1, 0, 1)
)

= vu(1 − 1 + 0) + vw(−1 + 0 + 1) = 0.

They are orthogonal. The inner product of the eigenvectors (1, 1, 0) and (−1, 0, 1) corre-
sponding to λ = 3 is

(

(1, 1, 0), (−1, 0, 1)
)

= −1. They are not orthogonal. Notice, however,
the vector (1, 1, 0)+ 2(−1, 0, 1) = (−1, 1, 2) is an eigenvector corresponding to λ = 3 and it
is orthogonal to the eigenvector (1, 1, 0).•

Example 6.2 The Hermitian matrix corresponding to a Hermitian operator on a complex inner product
space is

A =





2 0 i
0 1 0
−i 0 2



 .

Find its eigenvalues and eigenvectors. Demonstrate orthogonality of eigenvectors corre-
sponding to different eigenvalues.

Solution Eigenvalues are given by

0 = det(A − λI) = det





2 − λ 0 i
0 1 − λ 0
−i 0 2 − λ



 = −(λ − 1)2(λ − 3).

Thus, λ = 1 and λ = 3 are eigenvalues. Eigenvectors corresponding to λ = 1 are v2(0, 1, 0)+
v3(−i, 0, 1). Eigenvectors corresponding to λ = 3 are v3(i, 0, 1). If we take the inner product
of any eigenvector v = v2(0, 1, 0)+ v3(−i, 0, 1) corresponding to λ = 1, and any eigenvector
w = w3(i, 0, 1) corresponding to λ = 3, we obtain

(v, w) =
(

v2(0, 1, 0) + v3(−i, 0, 1), w3(i, 0, 1)
)

= v2w3(0) + v3w3(−1 + 1) = 0.

They are orthogonal.•

Eigenvectors corresponding to eigenvalues with algebraic multiplicity larger than one
need not be orthogonal, but from nonorthogonal eigenvectors, the Gram-Schmidt process
can be used to construct orthogonal eigenvectors corresponding to the same eigenvalue. Here
is an example.

Example 6.3 The symmetric (Hermitian) matrix of an operator on a 3-dimensional space is

A =





5 −2 4
−2 8 2
4 2 5



 .

Show that A has two eigenvalues one with (algebraic) multiplicity 2. Find orthonormal
eigenvectors corresponding to the eigenvalue with algebraic multiplicity 2.

Solution Eigenvalues are given by
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0 = det





5 − λ −2 4
−2 8 − λ 2
4 2 5 − λ



 = −λ(λ − 9)2.

Eigenvalues are λ = 0 and λ = 9. Eigenvectors corresponding to λ = 9 satisfy

0 = (A − 9I)v =





−4 −2 4
−2 −1 2
4 2 −4









v1

v2

v3



 .

The reduced row echelon form for the augmented matrix of this system is




1 1/2 −1
0 0 0
0 0 0

0
0
0



 .

When we convert to equations,

v1 +
v2

2
− v3 = 0.

Eigenvectors are therefore

v =





−v2/2 + v3

v2

v3



 =
v2

2





−1
2
0



 + v3





1
0
1



 .

Linearly independent eigenvectors corresponding to λ = 9 are v1 = (1,−2, 0) and v2 =
(1, 0, 1). We can construct an eigenvector corresponding to λ = 9 orthogonal to v1 using
Gram-Schmidt,

v3 = (1, 0, 1)−
(

(1, 0, 1), (1,−2, 0)
)

5
(1,−2, 0) = (1, 0, 1)− 1

5
(1,−2, 0) =

(

4

5
,
2

5
, 1

)

.

Orthonormal eigenvectors corresponding to λ = 9 are

v̂1 =
(1,−2, 0)√

5
and v̂3 =

(4, 2, 5)

3
√

5
.•

We now know that eigenvectors corresponding to different eigenvalues of a Hermitian
operator are orthogonal, and should an eigenvalue with algebraic multiplicity greater than
1 have more than one linearly independent eigenvector, then orthogonal eigenvectors can
be constructed from them. The following theorem shows that the geometric multiplicity of
every eigenvalue of a Hermitian operator on a finite-dimensional vector space must be equal
to its algebraic multiplicity. In other words, the number of linearly independent eigenvectors
of a Hermitian operator on a finite-dimensional space must be equal to the dimension of the
space.

Theorem 6.2 A Hermitian operator on an n-dimensional vector space has n linearly independent eigen-
vectors.

Proof We can prove this by showing that the n × n matrix A of the Hermitian operator
is diagonalizable. We do so by mathematical induction. If the space has dimension 1, then
A is a 1 × 1 matrix that is automatically diagonal. Assume that the k × k matrix A of
a Hermitian operator on a k-dimensional space is diagonalizable. Let H be a Hermitian
operator on a (k + 1)-dimensional space. The operator must have at least one eigenvalue,
call it λ1, and let v̂1 be a corresponding unit eigenvector. Expand v̂1 to an orthonormal
basis {v̂1, v̂2, . . . , v̂k+1} for the space. The matrix of a Hermitian operator is equal to its
Hermitian conjugate, and therefore if B is the matrix of H with respect to the orthonormal
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basis, then it is also equal to its Hermitian conjugate. In addition, because the basis is
orthonormal, equation 5.46 indicates that entries in the first column are

vi1 =
(

v̂i, H(v̂1)
)

=
(

v̂i, λ1v̂j

)

= λ1

(

v̂i, v̂j

)

= 0.

Since B is Hermitian, v1i = vi1, and matrix B must therefore be of the form

B =

(

λ1 0
0 C

)

,

where C is a k×k Hermitian matrix. By the induction hypothesis, C is diagonalizable, with
therefore k linearly independent eigenvectors b2, b3, . . ., bk+1. Thus, B is diagonalizable,
and v1, (0, b2), (0, b3), . . ., (0, bk+1) must be k + 1 linearly independent eigenvectors of H .
This verifies the result for all n.

Two immediate results of this theorem are the following corollaries.

Corollary 6.2.1 Algebraic and geometric multiplicities of eigenvalues of Hermitian operators are equal.

Corollary 6.2.2 Matrices associated with Hermitian operators are always diagonalizable.

EXERCISES 6.1

In Exercises 1–6 determine whether the matrix is Hermitian.

1.

(

3 2 − 5i
2 + 5i −4

)

2.

(

3 6 + 5i
6 + 5i 1

)

3.

(

i 2 − 3i
2 + 3i 41

)

4.





−2 1 − 2i i
1 + 2i 16 4 + 3i
−i 4 − 3i π



 5.





1 + i 2 −2 + 5i
2 −2 3i

−2 − 5i −3i 4



 6.





1 2i 1 − 3i
−2i 4 6 − 5i

1 + 3i 6 + 5i 42





7. Verify that diagonal entries in a Hermitian matrix must be real.

In Exercises 8–12 find eigenvalues and eigenvectors of the Hermitian operator with given matrix.

Verify that eigenvectors corresponding to distinct eigenvalues are orthogonal.

8.

(

1 1 + i
1 − i 2

)

9.





5 −2 4
−2 8 2
4 2 5



 10.





2 0 i
0 1 0
−i 0 2





11.





3 2 − i −3i
2 + i 0 1 − i
3i 1 + i 0



 12.





2
√

2 −i i
i 2

√
2 0

−i 0 2
√

2





Answers

1. Hermitian 2. Not Hermitian 3. Not Hermitian 4. Hermitian 5. Not Hermitian
6. Hermitian 8. λ = 0 with (−1 − i, 1); λ = 3 with (1 + i, 2)
9. λ = 0 with (−2,−1, 2); λ = 9 with (1,−2, 0) and (0, 2, 1)
10. λ = 3 with (i, 0, 1); λ = 1 with (0, 1, 0) and (−i, 0, 1)
11. λ = −1 with (−1, 1 + 2i, 1); λ = −2 with (1 + 3i,−2 − i, 5); λ = 6 with (1 − 21i, 6− 9i, 13)
12. λ =

√
2 with (

√
2i, 1,−1); λ = 2

√
2 with (0, 1, 1); λ = 3

√
2 with (

√
2i,−1, 1)
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§6.2 Orthogonal and Unitary Operators

In this section we study linear operators on real inner product spaces that are called orthog-

onal operators, and their complex counterparts called unitary operators.

Orthogonal Operators

Definition 6.4 A linear operator R on a real inner product space is said to be orthogonal if it preserves
norms of vectors; that is, for every vector v in the space,

‖R(v)‖ = ‖v‖. (6.7)

According to equation 5.32, the inner product of the space can be expressed in terms of
norms, and therefore an orthogonal operator also preserves inner products,

(

R(u), R(v)
)

= (u, v). (6.8)

The following theorem characterizes orthogonal operators in terms of their matrices.

Theorem 6.3 If the matrix associated with an orthogonal operator R on an n-dimensional real inner
product space, relative to an orthonormal basis of the space, is A, then:

(1) The columns of A are orthonormal vectors.

(2) AT A = I, AAT = I ⇐⇒ A−1 = AT

(3) The rows of A are orthonormal vectors.

(4) The determinant of A is ±1.

Proof (1) Since the columns of A are images of the orthonormal basis vectors, and R
preserves inner products and norms, the columns of A must be orthonormal.

(2) If u and v are any two vectors in the space, then

(u, v) = (Au, Av) = (AT Au, v), (see equation 6.2).

But for this to be valid for all u and v, we must have AT A = I, the appropriately sized
identity matrix (see Exercise 21 in Section 5.3). This means that the inverse of A is its
transpose.

(3) Since the matrix AAT = I gives the inner product of rows of A, the rows are orthonormal
vectors.

(4) This follows by taking determinants of AT A = I, and using the fact that the determinant
of AT is the same as that of A.

A matrix whose columns are orthonormal vectors is called an orthogonal matrix.
As a result, matrices associated with orthogonal operators are orthonormal. We might
have expected to call a matrix orthogonal if its columns are orthogonal vectors, and call it
orthonormal if its columns are orthonormal vectors. Unfortunately, this is not the common
terminology. There is no name for a matrix whose columns are just orthogonal; the columns
must be orthonormal for the matrix to be termed orthogonal.

Perhaps the easiest orthogonal operators to visualize are rotations in G2 and G3. They
preserve lengths of vectors, inner products, and and angles between vectors. For instance,
suppose that R is the linear operator on G3 that rotates vectors through angle θ around the
z-axis, counterclockwise as viewed far up the axis. According to Example 2.15 in Section
2.2, the matrix of the operator, relative to the natural basis of G3 is

A =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 .

Columns are clearly orthonormal vectors.
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Reflections of vectors in planes through the origin in G3 are also orthogonal operators.
In Exercise 9 of Section 2.2, it was shown that the matrix for the linear operator that reflects
vectors in the plane Ax + By + Cz = 0, where A and B are positive constants, is

1

A2 + B2 + C2





B2 + C2 − A2 −2AB −2AC
−2AB A2 + C2 − B2 −2BC
−2AC −2BC A2 + B2 − C2



 .

Once again, columns are orthonormal vectors.

Example 6.4 Show that every orthogonal operator on G2 is either a rotation or a reflection.

Solution If A is the 2 × 2 matrix of an orthogonal operator R on G2, then its columns
are orthonormal vectors. Without loss in generality, we can take the first column to be the
vector (cos θ, sin θ)T . There are then only two possible choices for the second column,

A =

(

cos θ − sin θ
sin θ cos θ

)

and A =

(

cos θ sin θ
sin θ − cos θ

)

.

The first matrix represents a counterclockwise rotation of vectors through angle θ (see Ex-
ample 2.15 in Section 2.2). The second matrix represents a reflection of vectors in the line
making angle θ/2 with the positive x-axis (see Exercise 12 in Section 2.2).

Unitary Operators

Unitary operators are the analogs in complex vector spaces of orthogonal operators in real
spaces.

Definition 6.5 A linear operator U on a complex inner product space is said to be unitary if it preserves
norms of vectors.

Unitary operators also preserve inner products of vectors. Matrices associated with unitary
operators are characterized in the following theorem.

Theorem 6.4 If the matrix associated with an unitary operator U on an n-dimensional complex inner
product space, relative to an orthonormal basis of the space, is A, then:

(1) The columns of A are orthonormal vectors.

(2) AT A = I, AAT = I ⇐⇒ A−1 = AT

(3) The rows of A are orthonormal vectors.

Proof (1) Since the columns of A are images of the orthonormal basis vectors, and U
preserves inner products and norms, the columns of A must be orthonormal.

(2) If u and v are any two vectors in the space, then

(u, v) = (Au, Av) = (A
T
Au, v), (see equation 6.4).

But for this to be valid for all u and v, we must have A
T
A = I, the appropriately sized

identity matrix. This means that the inverse of A is its Hermitian conjugate.

(3) Since the matrix AAT = I gives the inner product of rows of A, the rows are orthonormal
vectors.

Eigenvalues and Eigenvectors of Orthogonal and Unitary Operators

Like Hermitian operators, eigenvectors of unitary and orthogonal operators are orthog-
onal. We prove the result for unitary operators and state the result for orthogonal operators
as a corollary.
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Theorem 6.5 Eigenvalues of a unitary operator U on an n-dimensional complex vector space have mag-
nitude one, and eigenvectors corresponding to distinct eigenvalues are orthogonal. Further-
more, the geometric multiplicity of each eigenvalue is equal to its algebraic multiplicity, so
that the operator has n linearly independent eigenvectors.

Proof If v is an eigenvector of U corresponding eigenvalue λ, then

‖v‖ = ‖U(v)‖ (unitary operators preserve lengths)

= ‖λv‖ (v is an eigenvector)

= |λ|‖v‖.

This implies that |λ| = 1, so that eigenvalues have magnitude one. Now suppose that v1

and v2 are eigenvectors corresponding to distinct eigenvalues λ1 and λ2. Then

(v1, v2) =
(

U(v1), U(v2)
)

(unitary operators preserve inner products)

= (λ1v1, λ2v2) (v1 and v2 are eigenvectors)

= λ1λ2(v1, v2) (see properties 5.19).

Since |λ1| = 1, it follows that λ1 = 1/λ1, and λ1λ2 =
λ2

λ1

6= 1. It follows therefore that

(v1, v2) = 0, and the eigenvectors are orthogonal. Verification that U has n linearly inde-
pendent eigenvectors is similar to that in Theorem 6.2.

Corollary 6.5.1 Eigenvalues of an orthogonal operator R on an n-dimensional real vector space may be
real, or complex (in complex conjugate pairs), but, in either case, eigenvalues have magni-
tude one. Eigenvectors (which may be real or in complex conjugate pairs) corresponding to
distinct eigenvalues are orthogonal. Furthermore, the geometric multiplicity of each eigen-
value is equal to its algebraic multiplicity, so that the operator has n linearly independent
eigenvectors.

EXERCISES 6.2

In Exercises 1–3 verify that the matrix is orthogonal. Find eigenvalues and orthonormal eigen-

vectors for the associated operator.

1.

(

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

)

2.

(

1/
√

5 2/
√

5
−2/

√
5 1/

√
5

)

3.

(

1/
√

5 2/
√

5
−2/

√
5 1/

√
5

)

In Exercises 4–6 verify that the matrix is orthogonal. Find eigenvalues and verify that they have

magnitude equal to one. Find a normalized eigenvector corresponding to the real eigenvalue.

4.





0 1 0
0 0 1
1 0 0



 5.





1/3 2
√

2/3 0
2/3 −

√
2/6

√
2/2

−2/3
√

2/6
√

2/2



 6.





√
3/2 −

√
3/4 1/4

1/2 3/4 −
√

3/4
0 1/2

√
3/2





7. Verify that the following matrix is orthogonal. Find eigenvalues and orthonormal eigenvectors for the
associated operator.

1

2







1 −1 −1 −1
1 −1 1 1
1 1 −1 1
1 1 1 −1






.

In Exercises 8–9 verify that the matrix is unitary. Find eigenvalues and orthonormal eigenvec-

tors for the associated operator.
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8.

(

2i/
√

5 1/
√

5
1/

√
5 2i/

√
5

)

9.

(

(1 + i)/2 (1 + i)/2
(−1 + i)/2 (1 − i)/2

)

10. Verify that the following matrix is unitary.




1/
√

6 (1 + i)/2 1/
√

3
2i/

√
6 0 −i/

√
3

1/
√

6 −(1 + i)/2 1/
√

3





11. Prove that the product of two orthogonal matrices is orthogonal. Is this true for unitary matrices?

12. Prove that the inverse of an orthogonal matrix is also orthogonal.

Answers

1. λ = (1 + i)/
√

2, v = (1, i)/
√

2; λ = (1 − i)/
√

2, v = (1,−i)/
√

2
2. λ = (1 + 2i)/

√
5, v = (1, i)/

√
2; λ = (1 − 2i)/

√
5, v = (1,−i)/

√
2

3. λ = (2 + i)/
√

5, v = (2, 1 + i)/
√

6; λ = −(1 + 2i)/
√

5, v = (−1 + i, 2)/
√

6
4. λ = 1, λ = (−1 ±

√
3i)/2, v = (1, 1, 1)/

√
3

5. λ = −1, λ =
1

6

(

4 +
√

2 ± i

√

18− 8
√

2

)

, v = (2 +
√

2,−2 − 2
√

2, 2)/
√

22 − 4
√

2

6. λ = 1, λ =
1

8

(

4
√

3 − 1 ± i

√

15 + 8
√

3

)

, v = (1, 2−
√

3, 1)/
√

9 − 4
√

3

7. λ = −1, v = (0, 1,−1, 0)/
√

2, v = (0, 1, 1,−2)/
√

6; λ = (1 ±
√

3i)/2, v = (±
√

3i, 1, 1, 1)
8. λ = (1 + 2i)/

√
5, v = (1, 1)/

√
2; λ = (−1 + 2i)/

√
5, v = (1,−1)/

√
2

9. λ = (1 +
√

3i)/2, (1 + i,
(√

3 − 1)i
)

/
√

6 − 2
√

3; λ = (1 −
√

3i)/2,
(

1 + i,−(1 +
√

3)i
)

/
√

6 + 2
√

3
11. Yes


