Assignment 1

1. Let V be the set of all circles in the $x y$-plane with centres at the origin. Include in V a circle with centre at the origin and radius zero. If C_{1} and C_{2} are two circles in V, define $C_{1}+C_{2}$ to be the circle with centre at the origin with radius equal to the sum of the radii of C_{1} and C_{2}. If a is a real scalar, define $a C_{1}$ to be the circle with centre at the origin and radius equal to $|a|$ times the radius of C_{1}. Is V a real vector space? Justify your answer.
2. Show that in $P_{n}(x)$, any set of $n+1$ polynomials, one of degree 0 , one of degree 1 , one of degree $2, \ldots$, and one of degree n is linearly independent.
3. Find the rank, a basis for the row space, a basis for the column spacce, and a basis for the null space of the matrix

$$
\left(\begin{array}{cccc}
1 & i & 3 & 1+i \\
2-i & 3+i & 4 & i \\
2 i & -i & 1 & 4
\end{array}\right)
$$

4. Prove that when W_{1} and W_{2} are subspaces of a vector space V, then
dimension $\left(W_{1} \cap W_{2}\right)+$ dimension $\left(W_{1}+W_{2}\right)=$ dimension $W_{1}+$ dimension W_{2}.
5. The first five Chebyshev polynomials are
$T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{2}(x)=2 x^{2}-1, \quad T_{3}(x)=4 x^{3}-3 x, \quad T_{4}(x)=8 x^{4}-8 x^{2}+1$.
They constitute a basis for $P_{4}(x)$. So also do the first five Hermite polynomials

$$
h_{0}(x)=1, \quad h_{1}(x)=2 x, \quad h_{2}(x)=4 x^{2}-2, \quad h_{3}(x)=8 x^{3}-12 x, \quad h_{4}(x)=16 x^{4}-48 x^{2}+12
$$

Find the transition matrix from the Hermite basis to the Chebyshev basis.
6. Show that the set W_{1} of 2×2 symmetric matrices and the set W_{2} of 2×2 skewsymmetric matrices are subspaces of $M_{2,2}(\mathcal{R})$. Verify that $M_{2,2}(\mathcal{R})=W_{1} \oplus W_{2}$. Find the vector component of the matrix $\left(\begin{array}{cc}1 & 3 \\ -4 & 2\end{array}\right)$ along W_{1} as determined by W_{2} 。

