Assignment 2

1. (a) Show that the linear operator L on \mathcal{G}^{3} that reflects vectors in the plane $A x+B y+C z=0$ transforms vectors $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle$ according to

$$
\begin{gathered}
L(\mathbf{v})=\frac{1}{A^{2}+B^{2}+C^{2}}\left\langle\left(B^{2}+C^{2}-A^{2}\right) v_{x}-2 A B v_{y}-2 A C v_{z},-2 A B v_{x}+\left(A^{2}+C^{2}-B^{2}\right) v_{y}-2 B C v_{z}\right. \\
\left.-2 A C v_{x}-2 B C v_{y}+\left(A^{2}+B^{2}-C^{2}\right) v_{z}\right\rangle
\end{gathered}
$$

(b) Find the matrix of the linear operator with respect to the natural basis of \mathcal{G}^{3}.
(c) Find a basis for the null space of the operator.
2. The first five Legendre polynomials are

$$
p_{0}(x)=1, \quad p_{1}(x)=x, \quad p_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), \quad p_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), \quad p_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) .
$$

Find the matrix of the linear transformation L from $P_{4}(x)$ to $P_{3}(x)$ that maps functions $p(x)$ in $P_{4}(x)$ according to

$$
L(p(x))=\frac{d^{2} p}{d x^{2}}-2 \frac{d p}{d x}
$$

3. (a) Find a basis for the kernel of the linear transformation L that maps polynomials $p(x)$ in $P_{2}(x)$ to \mathcal{R} according to

$$
L(p(x))=\int_{a}^{b} p(x) d x
$$

(b) What is the range of the transformation?
(c) Is the transformation into, onto, and/or 1-1? Justify your answsers.
4. (a) Verify that the transformation L that maps $M_{2,2}(\mathcal{R})$ to $P_{3}(x)$ according to

$$
L\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=a x^{3}+(a-b) x^{2}+(a-c) x+d
$$

is linear.
(b) Find the matrix of the linear transformation with respect to natural bases in both spaces.
(c) Find the kernel and range of the transformation?
(d) Show that

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

and $\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}\right\}$ are bases for $M_{2,2}(\mathcal{R})$ and $P_{3}(x)$.
(e) Find the matrix of the linear transformation with respect to these bases.

