3132 Midterm 2 2024 Solutions

20 1. If a Frobenius solution
$$
y(x) = \sum_{n=0}^{\infty} a_n x^{n+r}
$$
 is assumed for the differential equation\n
$$
2x^2 \frac{d^2y}{dx^2} + x(1-x) \frac{dy}{dx} - y = 0,
$$

find the indicial roots and the recurrence relation for the a_n corresponding to the larger indicial root, simplified as much as possible. Do **NOT** iterate the recurrence relation.

When we substitute
$$
y(x) = \sum_{n=0}^{\infty} a_n x^{n+r}
$$
 into the differential equation
\n
$$
0 = \sum_{n=0}^{\infty} 2(n+r)(n+r-1)a_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)a_n x^{n+r} + \sum_{n=0}^{\infty} -(n+r)a_n x^{n+r+1} + \sum_{n=0}^{\infty} -a_n x^{n+r}
$$
\n
$$
= \sum_{n=0}^{\infty} 2(n+r)(n+r-1)a_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)a_n x^{n+r} + \sum_{n=1}^{\infty} -(n+r-1)a_{n-1} x^{n+r} + \sum_{n=0}^{\infty} -a_n x^{n+r}
$$
\n
$$
= a_0 [2r(r-1) + r - 1]x^r + \sum_{n=1}^{\infty} [2(n+r)(n+r-1)a_n + (n+r)a_n - (n+r-1)a_{n-1} - a_n]x^{n+r}.
$$

The indicial equation is

$$
0 = 2r(r - 1) + r - 1 = 2r^2 - r - 1 = (2r + 1)(r - 1) \implies r = -1/2, 1.
$$

When $r = 1$, the recurrence relation is given by

$$
2(n+1)(n)a_n + (n+1)a_n - na_{n-1} - a_n = 0
$$

\n
$$
[2(n+1)n + (n+1) - 1]a_n = na_{n-1}
$$

\n
$$
a_n = \frac{na_{n-1}}{2n^2 + 3n} = \frac{a_{n-1}}{2n + 3}, \quad n \ge 1
$$

5 2. Find value(s) of c, if any, for which the functions x and $x - x^3$ are orthogonal on the interval $0 \leq x \leq c$ with respect to the weight function $w(x) = x$.

For orthogonality, we require

$$
0 = \int_0^c x(x - x^3)x \, dx = \left\{ \frac{x^4}{4} - \frac{x^6}{6} \right\}_0^c = \frac{c^4}{4} - \frac{c^6}{6} = \frac{c^4}{12}(3 - 2c^2).
$$

Hence, $3 - 2c^2 = 0 \implies c = \pm \sqrt{3/2}$, only $c = \sqrt{3/2}$ being acceptable.

5 3. Find all singular points for the differential equation

$$
\sin (x - 1) \frac{d^y}{dx^2} + (x - 1) \frac{dy}{dx} + 3y = 0.
$$

Since $\frac{3}{\sin (x-1)}$ does not have a convergent Taylor series when $\sin (x-1) = 0 \implies x-1 = n\pi$, where *n* is an integer, singular points are $x = 1 + n\pi$.

20 4. The function

$$
f(x) = \begin{cases} 1-x, & -4 < x < 0, \\ -(x-4)/2, & 0 < x < 4, \end{cases}
$$
 $f(x+8) = f(x),$

is to be represented in Fourier series form

$$
\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n \pi x}{L} + b_n \sin \frac{n \pi x}{L} \right).
$$

- (a) What is the value for L ?
- (b) Use integration to find a_0 . Explain why this is to be expected.
- (c) Set up, but do **NOT** evaluate, definite integral(s) for coefficients b_n . Your integrand(s) must contain the function(s) $1 - x$ and/or $-(x - 4)/2$.
- (d) On the grid below, draw a graph of the function to which the Fourier series converges on the interval $-10 \le x \le 10$.

$$
\begin{array}{c} \text{(a)} \ L = 4 \\ \text{(b)} \end{array}
$$

$$
a_0 = \frac{1}{4} \int_{-4}^{4} f(x) dx = \frac{1}{4} \int_{-4}^{0} (1 - x) dx + \frac{1}{4} \int_{0}^{4} (1/2)(4 - x) dx
$$

= $\frac{1}{4} \left\{ x - \frac{x^2}{2} \right\}_{-4}^{0} + \frac{1}{8} \left\{ 4x - \frac{x^2}{2} \right\}_{0}^{4} = 4$

We know that $a_0/2 = 2$ should be the average value of $f(x)$ over one full period. Since the average value on the interval $-4 \le x \le 0$ is 3, and the average value of the interval $0 \le x \le 4$ is 1, the average value over $-4 \le x \le 4$ is 2.

(c)
$$
b_n = \frac{1}{4} \int_{-4}^{4} f(x) \sin \frac{n \pi x}{4} dx = \frac{1}{4} \int_{-4}^{0} (1 - x) \sin \frac{n \pi x}{4} dx + \frac{1}{4} \int_{0}^{4} \frac{1}{2} (x - 4) \sin \frac{n \pi x}{4} dx
$$