MATH 3132 Tutorial 2

1. Evaluate

$$
\int_{C}\left(3 x^{2} y z+\frac{1}{x+y}\right) d x+\left(x^{3} z+\frac{1}{x+y}\right) d y+\left(x^{3} y+2 z\right) d z
$$

where C is the straight line from $(1,1,1)$ to $(3,4,6)$.
2. (a) Find all domains in which the line integral

$$
\int_{C} \frac{x d x+y d y+z d z}{x^{2}+y^{2}+z^{2}}
$$

is independent of path. Justify your answer.
(b) Evaluate the line integral along that part of the curve $x^{2}+y^{2}+z^{2}=4, y=x$ in the first octant from $(\sqrt{2}, \sqrt{2}, 0)$ to $(0,0,2)$.
3. (a) For what value of the constant k is the line integral

$$
\int_{C} 2 x y^{3} d x+\left(k x^{2} y^{2}+2 y\right) d y-z^{2} d z
$$

independent of path in $x y z$-space?
(b) With the value of k from part (a), evaluate the line integral along the curve $y=x+1, z=y^{2}+x$ from the point $(1,2,5)$ to the point $(-1,0,-1)$.
4. Evaluate the line integral

$$
\oint_{C}\left(\sin x-x^{2} y\right) d x+\left(e^{y}+x y\right) d y
$$

where C is the closed curve in the $x y$-plane that bounds the area enclosed by the curves $x=2 y$, $x=2, y=0$.
5. Evaluate the line integral

$$
\oint_{C}\left(2 x y^{3}-x y\right) d x+\left(3 x^{2} y^{2}+x y^{2}\right) d y
$$

where C is edge of the triangle bounded by $y=-x, x=-1, y=0$.
6. Evaluate the line integral

$$
\oint_{C} y^{3} d x-x y^{3} d y
$$

where C is the edge of the triangle bounded by $x+y=1, x-y=1, x=0$.
7. Evaluate the line integral $\oint_{C} \frac{x d x+(y-1) d y}{x^{2}+(y-1)^{2}}$ around the curves (a) $x^{2}+(y-1)^{2}=1$ and (b) $(x+1)^{2}+y^{2}=1$.
8. Evaluate the line integral $\oint_{C}\left(3 x^{2} e^{y}+y\right) d x+x^{3} e^{y} d y$, where C is the curve $x^{2}+y^{2}=1$, using:
(a) parametric equations for the curve,
(b) independence of path,
(c) Green's theorem,
(d) area inside the curve.

Answers: 1. $682+\ln (7 / 2) \quad$ 2.(a) Any domain not containing the origin (b) $0 \quad \mathbf{3 . (a)} 3$ (b) 30 4. $-7 / 3$
5. $-1 / 4$
6. $1 / 2$
7.(a) 0 (b) 0
8. $-\pi$

